Posted in | News | Nanomaterials

Researchers Review Studies on Nanotwinned Metallic Materials

Dr. Xinghang Zhang, associate professor in the Department of Mechanical Engineering, recently published a review article, titled “Growth twins and deformation twins” in the May issue of Annual Reviews of Materials Research (2014). The journal has an impact factor of 16 and is well recognized in the Materials Science community.

Bright-field transmission electron microscopy (TEM) images of magnetron sputtered (a) epitaxial nanotwinned (NT) Cu, (b) epitaxial NT Ag (20), (c) polycrystalline NT 330 stainless steel films (arrows indicate the location of twin boundaries), and (d) electrodeposited (ED) NT Cu (14). (e) EBSD image of a defective twin boundary in sputtered NT Cu (X indicates a twin boundary that has defects—the so-called defective twin boundary). ( f ) Extremely fine twins in ED NT Cu nanopillars. (g) NT Au nanowires. Abbreviations: CTB, coherent twin boundary; ITB; incoherent twin boundary.

Zhang and his colleagues, Irene J. Beyerlein and Amit Misra from Los Alamos National Labs, reviewed studies on nanotwinned metallic materials. Nanotwins were shown to induce numerous unique properties in metallic materials, including high strength and ductility, high temperature thermal stability and superior radiation tolerance.

Zhang’s research team, the Nanometal Group has been working on mechanical behavior of nanotwinned metals since 2004. His research on nanotwinned metals is currently supported by the DoE-Office of Basic Energy Sciences, under grant no. DE-SC0010482.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.