Editorial Feature

What is a Nanosuperconductor?

Researchers are currently bringing a lot of attention to nanophysics; the study of physics involving the nanometer scale. In particular, they are highlighting the development of nanoscale superconductors. These nanoscale superconductors are known officially as ‘nanosuperconductors’ and are classified as a superconducting material developed at the scale of a nanometer.

Superconductivity occurs when a quantum condensate of paired electrons (Cooper pairs) is formed. In nanoparticles and other small particles, energy levels are quantized. Therefore, the average energy level spacing is bigger than the superconducting energy gap, and it is at this point that superconductivity is believed to be suppressed.

Contemporary researchers discovered that it is possible to create superconductors at the nanoscale, as even in something that small, superconductivity can still be maintained. This is evident in a number of experimental metals and nanomaterials, such as nanotubes.

ImageForArticle_5184_1555070889632200.jpg

A Demonstration of Superconductivity - Image Credit: Forance/Shutterstock

Applications of Nanosuperconductors

Nanosuperconductors first found many uses within electrical components, and their discovery helped to develop innovations in currently-existing semiconductors. They also enabled the conversion of non-superconducting materials into superconducting units.

While nanosuperconductors are generally utilized in metrology or high-frequency applications such as amplifiers, magnetometers, and imaging, they have a broad range of uses across many industries.

Chemistry, Medicine, and Biophysics

Nanosuperconductors are primarily utilized in the field of medicine and biophysics in the form of improved imaging techniques (e.g., magnetic resonance imaging, nuclear magnetic resonance). The developments in these techniques using nanosuperconductors could lead to more accurate diagnoses of physiological abnormalities or improved disease monitoring.

For example, nanosuperconductors are already being used to magnetically tag antibodies in humans, which enables better diagnostics and therefore, more effective treatment. They are also currently being utilized in the development and research of gradiometers. By improving the abilities of the gradiometers, nanosuperconductors could help physicians and parents measure and assess fetal heart signals more accurately in real time.

Power Applications

Prior research has often suggested that superconductivity is a necessary consideration when looking into improving and developing enhanced power solutions. Therefore, nanosuperconductors have unsurprisingly been found useful in the development of power transmissions, strong magnets, and small and compact motors.

Research into Nanosuperconductors

Present studies on nanosuperconductors are mostly aimed at expanding the applicability of the material. In particular, researchers are committed to developing new uses for the nanosuperconductors through the use of nano-cells; ranging from singular cellular materials to complex arrays of nanostructures.

For example, currently being tested is the applicability of high-temperature nanosuperconductors in ceramic. Current findings promote the viability of nanosuperconductors against varying temperatures, which implies that the material can operate appropriately regardless of increasing temperatures. This also suggests that nanosuperconductors could be implemented in other high-temperature applications.

In another study, it was found that the flux line pinning in superconductors - used to improve the transport properties of superconductors - could be better facilitated using nanoparticles. The experimental result suggested that critical current density becomes higher by a factor of 3 and the Jc–B behavior significantly improves when nanosuperconducting units are utilized. This finding supports other studies by displaying the wide use of nanosuperconductors in various areas.

Sources:

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Miranda, Gaea Marelle. (2022, September 06). What is a Nanosuperconductor?. AZoNano. Retrieved on November 24, 2024 from https://www.azonano.com/article.aspx?ArticleID=5184.

  • MLA

    Miranda, Gaea Marelle. "What is a Nanosuperconductor?". AZoNano. 24 November 2024. <https://www.azonano.com/article.aspx?ArticleID=5184>.

  • Chicago

    Miranda, Gaea Marelle. "What is a Nanosuperconductor?". AZoNano. https://www.azonano.com/article.aspx?ArticleID=5184. (accessed November 24, 2024).

  • Harvard

    Miranda, Gaea Marelle. 2022. What is a Nanosuperconductor?. AZoNano, viewed 24 November 2024, https://www.azonano.com/article.aspx?ArticleID=5184.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this article?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.