Think of it as a microscopic movie: A sequence of X-ray images shows the explosion of superheated nanoparticles. The picture series reveals how the atoms in these particles move, how they form plasma and how the particles change shape.
A new method to develop complexly arranged tiny objects combined with microspheres has been discovered by a group of scientists at IBM Research Zurich and ETH Zurich. These tiny objects are only a few micrometres in size and are formed in a modular manner, allowing their design to be programmed so that every single component displays a wide variety of physical properties. This is followed by introducing the micro-objects into a solution through a very simple step after the fabrication process.
In a new study recently published in Nature Nanotechnology, researchers from Columbia Engineering, Cornell, and Stanford have demonstrated heat transfer can be made 100 times stronger than has been predicted, simply by bringing two objects extremely close—at nanoscale distances—without touching. Led by Columbia Engineering’s Michal Lipson and Stanford Engineering’s Shanhui Fan, the team used custom-made ultra-high-precision micro-mechanical displacement controllers to achieve heat transfer using light at the largest magnitude reported to date between two parallel objects.
As the sizes of computer chips in electronic devices continue to shrink, traditional measurement tools (e.g., microscopes utilizing visible light) are no longer capable of examining surface features, which can be just tens of nanometers. In order to examine these tiny features, researchers use tools such as the critical dimension atomic force microscope (CD-AFM), which measures features by dragging its ¡Ö10 nm tip across the subject¡¯s surface much like a record player needle pulling across a record¡¯s grooves.
Scientists from the University of Copenhagen and the Paul Scherrer Institute in Switzerland have, for the first time, created a 3D image of food on the nanometer scale. The method the scientists used is called Ptychographic X-ray computed tomography. It has promising prospects as a more detailed knowledge of the structure of complex food systems could potentially save the food industry large sums of money and reduce food waste that occurs because of faulty production.
Single molecules can be observed in detail using special microscopes. However, these ultra-high resolution instruments require an image processing step to process the raw image data to obtain an image. A new open source software solution, capable of rapidly and efficiently processing such raw image data has been developed by the Members of the Biomolecular Photonics Group at Bielefeld University for an ultra-high resolution fluorescence microscope used for biophysical research.
Real-time, in situ monitoring of the self-assembly of nanocrystal structures has been made possible by a team of researchers using a combination of technologies, including controlled solvent evaporation and synchrotron X-ray scattering, paving the way for researchers to gain insights into the mechanisms behind the self-assembly of these structures.
Cellular environment is a disorganized space, where the movement and quantity of proteins and molecules are found to be in continuous instability. The performance of a cell can be discovered by predicting the fluctuating depth of a process or protein. These predictions are difficult to pinpoint in the open system of a cell, where everything can appear in a chaotic manner.
New research published today in the journal Physical Review Letters has described a new physical mechanism that separates particles according to their size during the drying of wet coatings. The discovery could help improve the performance of a wide variety of everyday goods, from paint to sunscreen.
From the tension of contracting muscle fibers to hydrodynamic stresses within flowing blood, molecules within our bodies are subject to a wide variety of mechanical forces that directly influence their form and function. By analyzing the responses of single molecules under conditions where they experience such forces we can develop a better understanding of many biological processes, and potentially, develop more accurately acting drugs. But up until now experimental analysis of single molecule interactions under force have been expensive, tedious and difficult to perform because it requires use of sophisticated equipment, such as an atomic force microscope or optical tweezers, which only permit analysis of one molecule at a time.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.