One of the basic principles of nanotechnology is that when you make things extremely small—one nanometer is about five atoms wide, 100,000 times smaller than the diameter of a human hair—they are going to become more perfect.
Nearly everyone is familiar with the polytetrafluoroethylene (PTFE), otherwise known as Teflon, the brand name used by the chemical company DuPont. Famous for being “non-sticky” and water repellent, PTFE is a dry lubricant used on machine components everywhere, from kitchen tools and engine cylinders to space and biomedical applications.
Berkeley Design Automation, Inc., provider of the world’s fastest nanometer circuit verification, today announced the immediate availability of Analog Characterization Environment (ACE™)—a high-productivity system to ensure nanometer-scale analog and mixed-signal circuits meet rigorous design performance requirements.
Cornell researchers Jenny Sabin, assistant professor of architecture, and Dan Luo, professor of biological and environmental engineering, are among the lead investigators on a new research project to produce “buildable, bendable and biological materials” for a wide range of applications.
Friction is an omnipresent but often annoying physical phänomenon: It causes wear and energy loss in machines as well as in our joints. In search of low-friction components for ever smaller components, a team of physicists led by the professors Thorsten Hugel and Alexander Holleitner now discovered a previously unknown type of friction that they call “desorption stick.”
Microscopic algae that live within reef-forming corals scoop up available nitrogen, store the excess in crystal form, and slowly feed it to the coral as needed, according to a study published in mBio®, the online open-access journal of the American Society for Microbiology.
Leon Dean had been working on “block copolymers,” self-assembling nanomaterials that can be used to pattern silicon wafers, for more than a year. But he knew only failure in trying to get them them to self-assemble into the right pattern — before it finally happened.
NanoSight reports on how Nanoparticle Tracking Analysis, NTA, is being used at the University of Wyoming in the characterization of the physical and interfacial properties of manufactured nano materials.
Leading nanoscientists created beautiful, tiled patterns with flat nanocrystals, but they were left with a mystery: Why did some sets of crystals arrange themselves in an alternating, herringbone style? To find out, they turned to experts in computer simulation at the University of Michigan and the Massachusetts Institute of Technology.
The Honourable Denis Lebel, Minister of Transport, Infrastructure and Communities, Minister of the Economic Development Agency of Canada for the Regions of Quebec and Minister of Intergovernmental Affairs, today announced that the organization NanoQuébec has been granted financial assistance for a project to translate knowledge into commercial applications, while improving the innovation capability and competitiveness of Quebec's small and medium-sized enterprises (SMEs).
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.