A workshop organized last year by the PETA International Science Consortium Ltd has resulted in an article published today in the journal Particle and Fibre Toxicology. It describes aerosol generation and exposure tools that can be used to predict toxicity in human lungs following inhalation of nanomaterials.
A recent Northwestern Medicine research has demonstrated a new method for treating allergies and asthma. It has been suggested that a biodegradable nanoparticle operates like a Trojan horse, as it hides an allergen in a friendly shell in order to prevent the immune system from attacking it. This results in shutting down the allergic reaction in the airways for a prolonged time and preventing an asthma attack.
Nanoparticles designed to block a cell-surface molecule that plays a key role in inflammation could be a safe treatment for inflammatory bowel disease (IBD), according to researchers in the Institute for Biomedical Sciences at Georgia State University and Southwest University in China.
Nanotechnology has led to better diagnostic techniques and more effective treatments for a variety of illnesses. Tiny devices enable scientists to observe cell activity and deliver drugs to individual cells -- a breakthrough that is on the verge of revolutionizing precision medicine for treatment of diseases such as cancer.
Scientists have devised a triple-stage "cluster bomb" system for delivering the chemotherapy drug cisplatin, via tiny nanoparticles designed to break up when they reach a tumor.
Being able to detect early on whether a cancer therapy is working for a patient can influence the course of treatment and improve outcomes and quality of life. However, conventional detection methods – such as PET scans, CT and MRI – usually cannot detect whether a tumor is shrinking until a patient has received multiple cycles of therapy. A new technique developed in pre-clinical models by investigators at Brigham and Women’s Hospital (BWH) offers a new approach and a read out on the effectiveness of chemotherapy in as few as eight hours after treatment.
c-myc mRNA has been established as a potential biomarker for detecting cancer, thanks to its critical function as a tumor suppressor or oncogene. Abnormal mRNA expression, in particular, is often seen during the development of early stage colon cancer. As a result, sensitive and specific detection of c-myc mRNA offers a potential way to make an early diagnosis of cancer, and has potential for the development of precision medicine.
Micro and nanorobots that attack tumors with the most precision using drug could be the way to combat cancer in the future. The development of magnetoelectric-controlled Janus machines by a team of ETH researchers, headed by Salvador Pané, has the potential for such advances.
Researchers at the Houston Methodist Research Institute have developed a unique drug that effectively removes lung metastases in mice. This latest breakthrough may radically redefine the treatment of metastatic triple negative breast cancer.
Atherosclerosis is a disease that causes a buildup of plaque in arteries. The disease is an invisible and prolific killer, but its ability to hide in the body and create havoc may soon be lost. A new nanoparticle has been developed by scientists, that acts as if it were a high-density lipoprotein (HDL). The nanoparticle can light up as well as treat the plaques that clog the arteries. This therapy technique can potentially assist to prevent strokes and heart attacks.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.