Every week in his clinic at the University of Michigan, neurologist Joseph Corey, M.D., Ph.D., treats patients whose nerves are dying or shrinking due to disease or injury.
Identifying fingerprints on paper is a commonly used method in police forensic work, but unfortunately it is not easy to make those fingerprints visible. Now, scientists at the Hebrew University of Jerusalem have developed a new approach for making such fingerprints more readily readable.
Weill Cornell Medical College announced today that it is a Grand Challenges Explorations winner, an initiative funded by the Bill & Melinda Gates Foundation. Researchers at Weill Cornell have been awarded three research grants totaling more than $1.5 million.
A University of Cincinnati (UC) cancer biology team reports breakthrough findings about specific cellular mechanisms that may help overcome endocrine (hormone) therapy-resistance in patients with estrogen-positive breast cancers, combating a widespread problem in effective medical management of the disease.
Cancer Treatment Centers of America (CTCA) and Nanospectra Biosciences have planned the first clinical trial for lung cancers of a new therapy that uses gold nanoshells, which were invented at Rice.
Scientific and medical research usually advances through the slow, painstaking accumulation of knowledge. Occasionally, however, radical ideas disrupt established patterns and may open up entirely new fields of study.
Brackets made from clear plastic polymer used in dental correction orthodontics have produced very good results in recent years, especially in relation to the improved esthetics when compared to metal brackets, but they do present certain problems of wear and tear within the mouth.
When surgeons operate to remove a tumor, determining exactly where to cut can be tricky. Ideally, the entire tumor should be removed while leaving a continuous layer of healthy tissue, but current techniques for locating the tumors during surgery are imprecise.
Researchers at Johns Hopkins have figured out the three-dimensional shape of the protein responsible for creating unique bonds within the cell wall of the bacteria that cause tuberculosis. The bonds make the bacteria resistant to currently available drug therapies, contributing to the alarming rise of these super-bacteria throughout the world.
A team of UC Davis scientists has shown in experimental mouse models that a new drug delivery system allows for administration of three times the maximum tolerated dose of a standard drug therapy for advanced bladder cancer, leading to more effective cancer control without increasing toxicity.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.