Researchers from MIT and other institutions have discovered a new phenomenon of the behavior of plasmons (a kind of quasiparticle) as they move accross tiny ribbons of two-dimensional materials, such as graphene and transition metal dichalcogenides (TMD). These materials possess a hexagonal structure similar to chicken wire.
Solar fuels are clean fuels harvested from sunlight, water, and carbon dioxide, and they provide a way of storing solar energy, for instance in hydrogen or hydrocarbons. However efficiency is still a concern for this technology. Kasper Wenderich of the MESA+ Institute for Nanotechnology of the University of Twente has created special nanosized plates with platinum particles on them to speed up the chemical conversion. As part of his PhD thesis, he determined the reason why the reduced effect of these particles is lower than generally expected.
A simple and effective technique to extract graphene, and the contaminants and toxins they from water using light has been developed by researchers at Monash University. The research work is being published in Nanoscale, the journal of the Royal Society of Chemistry. The new findings could considerably influence large volume water purification.
Nano One Materials Corp. (“Nano One or the Company”) is pleased to announce the issuance of Taiwanese Patent No. 201207152 related to batteries utilizing the proprietary lithium mixed metal oxides developed by Nano One. The method for making the proprietary oxides is discussed in previously issued U.S. Patent Nos. 9,136,534 and 9,159,999.
An international team of scientists led by the National Physical Laboratory (NPL) has performed novel measurements of graphene's electrical response to synthetic air, exposing a distinct knowledge gap that needs to be bridged before the commercialisation of graphene-based gas sensors.
In an article published in Nature today, researchers at Lund University in Sweden show how different arrangements of atoms can be combined into nanowires as they grow. Researchers learning to control the properties of materials this way can lead the way to more efficient electronic devices.
Eggshells, when placed on end, can be as strong as the arches holding the ancient Roman aqueducts. However they easily crack in the middle, prompting us to throw them away. Researchers suggest that adding tiny eggshell pieces to bioplastic can create a biodegradable packaging material, a first-of-its-kind, which bends but does not break so easily.
Researchers at the University of Cincinnati were excited when they realized that a new nanostructure, with higher properties for technological use, may allow doctors to observe and eliminate cancerous cells.
A research study, conducted at the University of Arkansas (U of A), has demonstrated that temperature can be employed to considerably change the behavior of 2D materials, which are now being explored for use in next-generation electronic devices.
Batteries that power common devices of modern life, from computers and smartphones to electrically driven cars, are often made of toxic materials, like lithium, that are not easy to dispose of and have a limited global supply. However, researchers at the Massachusetts Institute of Technology (MIT) have developed a new system to generate electricity, which utilizes heat instead of toxic materials or metals.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.