An Easy-to-Use Method to Separate Metallic and Semiconducting Single-Wall Carbon Nanotubes

Hiromichi Kataura and Takeshi Tanaka, the Self-Assembled Nano-Electronics Group, the Nanotechnology Research Institute of the National Institute of Advanced Industrial Science and Technology (AIST) have developed an easy-to-use method to separate metallic and semiconducting single-wall carbon nanotubes (SWCNTs) using agarose gel.

Separation of metallic and semiconducting SWCNTs by a freeze, thaw and squeeze method with SWCNTs-containing agarose gel. A solution containing metallic SWCNTs and a gel containing semiconducting SWCNTs are simultaneously obtained by squeezing the SWCNTs-containing gel after freeze and thaw processes.

Synthesis of SWCNTs usually results in a 1:2 mixture of metallic and semiconducting ingredients. Further separation of the ingredients is very important for electrical applications, but has been difficult so far.

AIST developed a separation method for metallic and semiconducting SWCNTs with a high yield by means of electrophoresis using agarose gel, as published in February 2008, and has since developed a much more simplified method as described below.

The new method simply freezes, thaws and squeezes SWCNTs-containing agarose gel (Fig. 1). The process is intrinsically simple, can be low-cost method through automation, and is easy to be scaled up. The process will then lead to mass production of metallic and semiconducting SWCNTs.

Part of the results of this study will be published in the U. S. scientific journal Nano Letters on March 11, 2009.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.