Feb 25 2010
Sometimes, molecules need help making the right connections. When multiple ways exist to join organic fragments together, metal catalysts can direct the assembly process so that only certain structures form.
Now, Shunpei Ishikawa and Kei Manabe from the RIKEN Advanced Science Institute in Wako and the University of Shizuoka, Japan, have developed a palladium-catalyzed procedure that couples aromatic rings in completely unexpected ways, thanks to a new molecular ligand with specially designed spatial attributes.
Ishikawa and Manabe studied how to attach a benzene-based molecule to another aromatic ring containing an alcohol (–OH) group and two bromine (Br) atoms, located either beside (ortho) or far across from the –OH. Reactions that can link the rings at one of the Br sites, while leaving the other untouched, are extremely valuable to synthetic chemists for creating drug compounds and materials like liquid crystals. Because the ortho-Br is the geometrically and electronically least favored addition site, it is particularly difficult to establish couplings there.
Click here to read the full article.