Using Laser Pulse to Fabricate Nanostructures for Microelectronic Devices

Demand for ever-smaller electronic devices, whether are for information storage, high-definition displays or sensor arrays, is driving demand for nanofabrication techniques that can define ever-smaller features on circuit boards — on scales smaller than micrometers, or even nanometers, in diameter.

Electron beam and X-ray lithography are well-established techniques for nanofabrication, but both have disadvantages, especially in terms of cost and flexibility. On the contrary, optical lithography is generally cheap and adaptable, but it does not allow the fabrication of features smaller than a few hundred nanometers. This limitation can be overcome by applying a technique known as near-field enhanced laser irradiation, whereby the light of optical beams is concentrated in a spatial region much smaller than the wavelength when it scatters on a nanostructure. The degree of improvement is determined by the dimensions of the nanostructures and the distance from its surface.

Using optical lithography, Xincai Wang from A*STAR’s Singapore Institute of Manufacturing Technology and co-workers have now fabricated arrays of ‘nanobumps’ surrounded by ring-shaped trenches on a silicon substrate.

Click here to read the full article.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.