Posted in | News | Nanoelectronics

Nanotechnology to Address the Limitations of Conventional Solar Cells

Research carried out at Northwestern University, Chicago, has yielded a new solar cell that addresses the limitations of current solar cells.

The new device that makes optimum use of nanotechnology is not just economical, environmental friendly and high on operating efficiency, but also eliminates the limitation of the Grätzel cell. The Grätzel cell scores high on all aspects except for one problem that their life is not more than 18 months. This is because the organic liquid used as the cell’s electrolyte has a tendency to leak and corrodes the cell. The Northwestern cell is all solid. It comprises a compound of cesium, tin and iodine, dubbed as CsSnI3, composed into a thin film.

The teams led by Northwestern’s chemist Mercouri Kanatzidis and nanotechnology expert Robert P. H. Chang combined their expertise to develop the new cell. The cell measures 1 sq. cm with a thickness of 10 microns. Nano particles of titanium oxide are used as n-type semiconductor and the CsSnI3 film serves as a soluble p-type semiconductor. The junction is made of nanoparticles coated with sunlight-absorbing dye. The nanoparticles are optimally sized at 20nm diameter to allow the special liquid developed by Kanatzidis team to flow in between. The liquid is similar to paint solvent that solidifies in time. It is at this solid junction that the light photons are converted to electricity.

The Grätzel cell can convert up to 12% of the incident sunlight into electricity. The Northwestern cell is not far behind and is shown to have a conversion efficiency of around 10.2 %. This is the highest efficiency ever reported for a solid-state cell. The next step in the project is to develop a complete array of cells.

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

G.P. Thomas

Written by

G.P. Thomas

Gary graduated from the University of Manchester with a first-class honours degree in Geochemistry and a Masters in Earth Sciences. After working in the Australian mining industry, Gary decided to hang up his geology boots and turn his hand to writing. When he isn't developing topical and informative content, Gary can usually be found playing his beloved guitar, or watching Aston Villa FC snatch defeat from the jaws of victory.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Thomas, G.P.. (2019, February 12). Nanotechnology to Address the Limitations of Conventional Solar Cells. AZoNano. Retrieved on November 22, 2024 from https://www.azonano.com/news.aspx?newsID=24923.

  • MLA

    Thomas, G.P.. "Nanotechnology to Address the Limitations of Conventional Solar Cells". AZoNano. 22 November 2024. <https://www.azonano.com/news.aspx?newsID=24923>.

  • Chicago

    Thomas, G.P.. "Nanotechnology to Address the Limitations of Conventional Solar Cells". AZoNano. https://www.azonano.com/news.aspx?newsID=24923. (accessed November 22, 2024).

  • Harvard

    Thomas, G.P.. 2019. Nanotechnology to Address the Limitations of Conventional Solar Cells. AZoNano, viewed 22 November 2024, https://www.azonano.com/news.aspx?newsID=24923.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.