Pixelligent Technologies, an innovator in manufacturing nanocrystal dispersions for the electronics, semiconductor and industrial markets, has signed a Cooperative Research and Development Agreement (CRADA) with the Department of Energy's (DOE) Argonne National Laboratory.
Research conducted under the CRADA will allow Pixelligent to determine the impact of its advanced nanocrystal dispersions on improving the tribological properties of industrial and automotive lubricants. Initial results have shown that Pixelligent's technology could significantly reduce parasitic energy losses -- ultimately helping to improve energy efficiency and reduce fuel consumption.
Approximately 10 percent to 15 percent of the 10 million to 12 million barrels of petroleum per day used for transportation in the United States is lost to parasitic engine and drivetrain friction. Significant reduction in fuel consumption can be achieved by implementing low-friction, resource-conserving lubricants, which is the focus of this CRADA. CRADAs allow government research laboratories like Argonne and private sector companies to work together on collaborative research and development projects for the purpose of speeding up the commercialization of technology.
Pixelligent will use Argonne expertise to provide detailed data on the friction and wear properties of its nanocrystal dispersions blended into formulated and unformulated lubricant fluids. This information will be used by Pixelligent to select and optimize the nanocrystals and capping agents, in order to further develop and commercialize a nanocrystal dispersion that significantly reduces friction in a broad family of lubricants.
"I believe the incredibly talented tribology team and world class tools at Argonne combined with Pixelligent's leading nanocrystal dispersion technology has the potential to deliver a new generation of highly efficient lubricants," commented Craig Bandes, President & CEO of Pixelligent Technologies.
The results of this program will give DOE information on the tribological properties of nano-oxide materials -- information, that if properly developed, has the potential to reduce parasitic losses in engines, drivelines, and other industrial systems, and thereby improve energy-conversion efficiency and carbon-emission performance. It will also support DOE in the research and development of potentially advanced low-friction lubricants for legacy vehicles. The legacy vehicle market is large (more than 250 million vehicles in the United States) and the potential petroleum savings are significant.