Novel Nuclear MRI Technique Delivers 10­nm Spatial Resolution

A team from the University of Illinois at Urbana-Champaign and Northwestern University has devised a novel nuclear magnetic resonance imaging (MRI) technique that delivers a roughly 10­nanometer spatial resolution. This represents a significant advance in MRI sensitivity—modern MRI techniques commonly used in medical imaging yield spatial resolutions on the millimeter length scale, with the highest-resolution experimental instruments giving spatial resolution of a few micrometers.

Illustration of the experimental setup shows the two unique components of the teams novel MRI technique that was successful in producing a 2D MRI image with spatial resolution on the nanoscale.

“This is a very promising experimental result,” said U. of I. physicist Raffi Budakian, who led the research effort. “Our approach brings MRI one step closer in its eventual progress toward atomic-scale imaging.”

MRI is used widely in clinical practice to distinguish pathologic tissue from normal tissue. It is noninvasive and harmless to the patient, using strong magnetic fields and non-ionizing electromagnetic fields in the radio frequency range, unlike CT scans and tradiational X-rays, which both use more harmful ionizing radiation.

MRI uses static and time-dependent magnetic fields to detect the collective response of large ensembles of nuclear spins from molecules localized within millimeter-scale volumes in the body. Increasing the detection resolution from the millimeter to nanometer range would be a technological dream come true.

The team’s breakthrough—the new technique introduces two unique components to overcome obstacles to applying classic pulsed magnetic resonance techniques in nanoscale systems. First, a novel protocol for spin manipulation applies periodic radio-frequency magnetic field pulses to encode temporal correlations in the statistical polarization of nuclear spins in the sample. Second, a nanoscale metal constriction focuses current, generating intense magnetic field-pulses.

In their proof-of-principal demonstration, the team used an ultrasensitive magnetic resonance sensor based on a silicon nanowire oscillator to reconstruct a two-dimensional projection image of the proton density in a polystyrene sample at nanoscale spatial resolution.

“We expect this new technique to become a paradigm for nanoscale magnetic-resonance imaging and spectroscopy into the future,” added Budakian. “It is compatible with and can be incorporated into existing conventional MRI technologies.”

The team’s paper, “Nanoscale Fourier-Transform Magnetic Resonance Imaging,” is published in Physical Review X, v. 3, issue 3, 031016.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    University of Illinois at Urbana-Champaign. (2019, February 11). Novel Nuclear MRI Technique Delivers 10­nm Spatial Resolution. AZoNano. Retrieved on November 21, 2024 from https://www.azonano.com/news.aspx?newsID=28398.

  • MLA

    University of Illinois at Urbana-Champaign. "Novel Nuclear MRI Technique Delivers 10­nm Spatial Resolution". AZoNano. 21 November 2024. <https://www.azonano.com/news.aspx?newsID=28398>.

  • Chicago

    University of Illinois at Urbana-Champaign. "Novel Nuclear MRI Technique Delivers 10­nm Spatial Resolution". AZoNano. https://www.azonano.com/news.aspx?newsID=28398. (accessed November 21, 2024).

  • Harvard

    University of Illinois at Urbana-Champaign. 2019. Novel Nuclear MRI Technique Delivers 10­nm Spatial Resolution. AZoNano, viewed 21 November 2024, https://www.azonano.com/news.aspx?newsID=28398.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.