Posted in | News | Nanomaterials

Nanowires with Aesthetic Appeal Utilized in a Range of Technologies

There are exam­ples of art imi­tating nature all around us—whether it’s Monet’s pastel Water Lilies or Chihuly’s glass­blown Seaforms, the human con­cep­tion of nat­ural phe­nomena daz­zles but does not often surprise.

Yet when asso­ciate pro­fessor of physics Latika Menon peered under the elec­tron micro­scope last fall, she dis­cov­ered the exact oppo­site. Instead of art imi­tating nature, she found nature imi­tating art.

Menon grew up in the eastern region of India and was vaguely familiar with a cul­tural dance from the western state of Rajasthan known as the Bhavai pot dance. Nimble dancers sway their hips as a tall stack of wide-​​bellied pots bal­ances gin­gerly atop their heads. Back in the lab at North­eastern, Menon’s team recently cre­ated gal­lium nitride nanowires, which bore a striking resem­blance to that stack of pots.

What’s more, a post­doc­toral research asso­ciate in Menon’s lab, Eugen Panaitescu, jumped on the band­wagon with a cul­tural art ref­er­ence of his own. Panaitescu, who hails from Romania, also saw his country’s famous End­less Column reflected in the nanowires. Ded­i­cated to the fallen Romanian heroes of World War I, Con­stantin Brancusi’s 96-​​foot-​​tall mono­lith is con­structed of 17 three-​​dimensional rhom­buses, peri­od­i­cally wavering from a wider cir­cum­fer­ence to a nar­rower one.

But the North­eastern researchers’ nanowires aren’t just notable for their aes­thetic appeal. Gal­lium nitride is used across a range of tech­nolo­gies, including most ubiq­ui­tously in light emit­ting diodes. The mate­rial also holds great poten­tial for solar cell arrays, mag­netic semi­con­duc­tors, high-​​frequency com­mu­ni­ca­tion devices, and many other things. But these advanced appli­ca­tions are restricted by our lim­ited ability to con­trol the material’s growth on the nanoscale.

The very thing that makes Menon’s nanowires beau­tiful rep­re­sents a break­through in her ability to process them for these novel uses. She deposited onto a sil­icon sub­strate small droplets of liquid gold metal, which act as cat­a­lysts to grab gaseous gal­lium nitride from the atmos­phere of the exper­i­mental system. The net forces between the tiny gold droplet, the solid sub­strate, and the gas cause the nanowire to grow in a par­tic­ular direc­tion, she explained. Depending on the size of the gold cat­a­lyst, she can create wires that exhibit peri­odic serrations.

“It first tries to grow out­ward, but that gives the gold a larger sur­face area,” she said. “So now the wire gets pulled in the inward direc­tion, and then the gold gets a smaller sur­face area, so it grows out­ward again.” This inward and out­ward growth repeated itself again and again to create a peri­odic struc­ture nearly 6 mil­lion times smaller than the end­less column and is sig­nif­i­cantly more promising for its use in advanced devices.

“That there is very little imple­men­ta­tion of nanowire tech­nology in elec­tronics or optical devices is due to the fact that it’s very hard to con­trol their shape and dimen­sions,” said Menon. But now that she has a very simple way of con­trol­ling growth, the next step is to con­trol the size of the cat­alytic droplet with which she starts.

Another advan­tage of Menon’s approach is using what Panaitescu called “macro­scopic tech­niques” to create nanoscale mate­rials, thus making it scal­able and inex­pen­sive. “We just con­trol a few para­me­ters and then leave it, let it do it’s nat­ural thing,” explained Menon.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.