Nov 12 2014
Stretchable electronics concerns electrical and electronic circuits and combinations of these that are elastically or inelastically stretchable by more than a few percent while retaining function.
For that, they tend to be laminar and usually thin. No definitions of electronics and electrical sectors are fully watertight but it is convenient to consider stretchable electronics as a part of printed electronics, a term taken to include printed and potentially printed (eg thin film) electronics and electrics. This is because the cost, space and weight reduction sought in most cases is best achieved by printing and printing-like technologies.
Commercialization
Commercialization is elusive, though there are some initial adoption such as moldable parts in vehicles and shape changing electroactive polymers for haptic response. New devices also include Reebok's head impact indicator "CheckLight". These are just the beginning, with end users and participants seeing huge potential.
Investment
Electronics that are very elastic or deformable without loss of function has seen several hundred million dollars spent by universities on such research so far and more modest tens of millions of dollars has been raised by companies to pursue the opportunity. A notable example of this was the 2012 round of $12.5 million by MC10 in the USA, a company exclusively dedicated to commercialising stretchable electronics. Others are involved in the materials to enable stretchable electronics such as carbon nanotubes.
Market and territory analysis
The applications targeted are primarily in healthcare, including health-related monitoring and management for military purposes and sport. About 40% of the research and commercialisation of stretchable electronics takes place in the USA, with the UK, Germany, Sweden, Netherlands, Belgium, France, Korea and Japan, also making a broad impact. This report examines who is bringing what to market and why and it analyses where the most promising opportunities lie. It scopes the emerging stretchable technologies, many of which promise huge improvements, opening yet more potential markets.
Main areas the report covers
The report examines how stretchable technology fits into the electronics and end user markets, the materials and applications that look most promising, and the lessons of success and failure. Profiles of 56 organizations that have made significant advances are provided.