Posted in | News | Microscopy

Advanced Microscopic Imaging Helps Determine How Cells Encode Information About Incoming Chemical Signals

Scientists have discovered a general principle for how cells could accurately transmit chemical signals despite high levels of noise in the system, they report in Science this week.

A cell's response to outside chemical signals depends on its physiological state, which can fluctuate considerably. Amounts of different kinds of proteins within individual cells varies by as much as 25 percent.

"Compared with an engineered components such as a transistor, that's a lot of noise," says Roy Wollman, a professor of chemistry and biochemistry at the University of California, San Diego. "This requires a different kind of problem solving."

Wollman and colleagues combined advanced microscopic imaging with information theory to determine how cells might encode information about the level of incoming chemical signals, given their variable states.

They studied three different chemical communication systems - molecules outside the cells that effect three different kinds of changes within, each on a different time scale. One signal releases calcium from internal stores to diffuse freely through the cytoplasm within minutes. Another changes the shape of a responding molecule over about an hour. A third moves a protein from the cytoplasm to the cell nucleus where it interacts with DNA over about 10 hours.

Wollman's team recorded responses to the three signals with a microscopy system that continuously measures changes in thousands of cells at a time. They monitored more than nine-hundred thousand cells responding to varying levels of each of the three chemical signals.

No single measure captured the cells' responses in a way that accurately preserved information about the concentration of the chemical signal outside the cell. Instead, a measure that captured the change of the cell's responses over time accurately recorded the level of the incoming signal. And information theoretical analysis concluded that the 'noise' of varying cellular states could be eliminated in this way.

"It shows how to build a communication system that can function in the presence of so much noise," Wollman said.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.