Posted in | News | Nanomaterials

Bruker Introduces Scanning Microwave Impedance Microscopy for Dimension Icon AFMs

PeakForce sMIM Mode Provides Enhanced Nanoscale Mapping of Permittivity and Conductivity

Bruker’s Nano Surfaces Division today announced the release of scanning microwave impedance microscopy (sMIM) capability for its Dimension Icon® atomic force microscope (AFM) platform. The innovative sMIM technique works by reflecting a microwave signal from a nano-probe and sample interface to reveal the electrodynamic properties of the sample surface and sub-surface. The detection and processing of microwave reflectance is done in real time, allowing direct access to the permittivity and conductivity of materials. When integrated with Bruker’s unique PeakForce Tapping®, sMIM greatly expands its applications to simultaneous characterization of electrical and mechanical properties. In addition, Bruker’s new PeakForce sMIM mode enables characterization of previously challenging measurements on fragile samples, such as nanotubes, nanowires, biological samples and is ideal for electrical characterization of 2D materials.

We greatly expanded the nano-electrical characterization capabilities for researchers in the semiconductor industries by bringing Bruker’s exclusive PeakForce Tapping to the exciting sMIM technology developed by PrimeNano Inc. Researchers can now benefit from the most sensitive and complete permittivity and conductivity data on even the most delicate of materials, all at the nanoscale.

Marco Tortonese, Ph.D., Vice President and General Manager of Bruker’s AFM Instrumentation Business.

“Our sMIM technique is already changing the way nanoelectric research is being done, and we are gratified that the electronics and proprietary probes we have developed are benefitting the entire AFM community,” added Dr. Stuart Friedman, CEO of PrimeNano, Inc. “PrimeNano’s enabling sMIM technology being utilized with Bruker’s well-known Icon system, particularly in conjunction with their PeakForce Tapping mode, is another huge step in this endeavor.”

The AFM-based sMIM technique accesses the reflected microwave signal from the tip-sample interface to reveal electrodynamic property data of the sample surface underneath the tip. Since it is based on the capacitive coupling between the tip and the sample, sMIM does not require making electrical contact between the sample and the substrate. This frees researchers and engineers from the tedious work of wiring and soldering that might alter the sample electrical properties and be impossible for nanoscale materials. As a near-field method, the resolution of sMIM is only limited by the tip radius of the probe, and it can easily achieve a lateral resolution of <20 nm for electrical mapping. Sub-aF sensitivity and high S/N ratios are realized by using waveguide tips with coaxial shielding. Having these unique capabilities, sMIM is superior to other AFM-based electrical modes for a broad range of applications. The versatility of PeakForce sMIM leveraging Dimension Icon and PeakForce Tapping will empower material researchers and device engineers to explore basic principles underlying functionality and perform more advanced and complete materials characterization and device failure analysis.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Bruker Nano Surfaces and Metrology. (2017, July 31). Bruker Introduces Scanning Microwave Impedance Microscopy for Dimension Icon AFMs. AZoNano. Retrieved on November 21, 2024 from https://www.azonano.com/news.aspx?newsID=34675.

  • MLA

    Bruker Nano Surfaces and Metrology. "Bruker Introduces Scanning Microwave Impedance Microscopy for Dimension Icon AFMs". AZoNano. 21 November 2024. <https://www.azonano.com/news.aspx?newsID=34675>.

  • Chicago

    Bruker Nano Surfaces and Metrology. "Bruker Introduces Scanning Microwave Impedance Microscopy for Dimension Icon AFMs". AZoNano. https://www.azonano.com/news.aspx?newsID=34675. (accessed November 21, 2024).

  • Harvard

    Bruker Nano Surfaces and Metrology. 2017. Bruker Introduces Scanning Microwave Impedance Microscopy for Dimension Icon AFMs. AZoNano, viewed 21 November 2024, https://www.azonano.com/news.aspx?newsID=34675.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.