Carbon Nanotube Based Nanomotor Gets Power From Heat and Can Move or Rotate Cargo

Researchers from the UAB Research Park have created the first nanomotor that is propelled by changes in temperature. A carbon nanotube is capable of transporting cargo and rotating like a conventional motor, but is a million times smaller than the head of a needle. This research opens the door to the creation of new nanometric devices designed to carry out mechanical tasks and which could be applied to the fields of biomedicine or new materials.

The "nanotransporter" consists of a carbon nanotube - a cylindrical molecule formed by carbon atoms - covered with a shorter concentric nanotube which can move back and forth or act as a rotor. A metal cargo can be added to the shorter mobile tube, which could then transport this cargo from one end to the other of the longer nanotube or rotate around its axis.

Researchers are able to control these movements by applying different temperatures at the two ends of the long nanotube. The shorter tube thus moves from the warmer to the colder area and is similar to how air moves around a heater. This is the first time a nanoscale motor is created that can use changes in temperature to generate and control movements.

The movements along the longer tube can be controlled with a precision of less than the diameter of an atom. This ability to control objects at nanometre scale can be extremely useful for future applications in nanotechnology, e.g. in designing nanoelectromechanical systems with great technological potential in the fields in biomedicine and new materials.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.