Carbon Skeleton Forms Backbone to Advanced Supercapacitor

In an article recently available as a pre-proof in the journal Carbon, a novel method was discussed to synthesize and make stable carbon skeletons for high-performing supercapacitors involving both tin oxide as well as carbon nanofibers.

Carbon Skeleton Forms Backbone to Advanced Supercapacitor

Study: Constructing a novel carbon skeleton to anchor Sn/SnO2 nanodots for flexible supercapacitor with excellent rate capability. Image Credit: Composite_Carbonman/Shutterstock.com

What are Supercapacitors?

With the depletion of nonrenewable energy supplies such as fossil fuels, green technology and sustainable sources have received much interest from research and industry.  

Supercapacitors (SCs) have a capacitance value much higher than usual capacitors and have a number of benefits over other energy storage devices, including quick charging and discharging process, high power density, and extended cycle life. They can hold around ten to a hundred times more amount of energy or mass than electrochemical batteries, accept and deliver charge much faster than rechargeable batteries, and are able to withstand several more charging and discharging cycles than common batteries.

Supercapacitors have commonly been found with materials having high-temperature stability, good conductivity, low cost and chemical inertness at extreme operating conditions. These supercapacitors have applications in day-to-day engineering gadgets.

Supercapacitors are employed for regenerative brakes, brief power repository, or burst-mode power delivery, instead of long-term condensed energy storage. Thus, they are highly suited for temporary energy storage where bursts of energy are required at regular intervals.

Nanotechnology and Supercapacitors

SCs act as a link across regular capacitors and fuel cells. Traditional capacitors have a higher energy density, whereas fuel cells offer high-energy storage technologies. Due to the larger surface area of their electrodes, supercapacitors have greater capacitances than regular capacitors.

Although a multitude of factors influences the efficacy of energy storage systems, the structure and qualities of the constituents have a significant impact on overall performance. Different innovations, including graphene, carbon nanotube, hexagonal carbonitrides, carbides and perovskites, as well as architectures like zero-dimensional nanomaterials, 1D nanostructures, 2D nanostructures, as well as 3D nanostructures, for effective energy storage, have been created as a result of recent advances in nanotechnology.

Tin Oxide (SnO2) and Carbon – A Perfect Match

Due to its high anticipated capacity, plentiful reservoir, and eco-friendliness, tin-based compounds (SnS2, SnO2, Sn) have recently been extensively employed as electrochemical devices for Lithium-ion batteries and SCs. Throughout the charging-discharging cycle, however, the limited volume expansion and conductivity result in substandard electromagnetic interaction among both the collector as well as the electrode containing SnO2, affecting cyclic reliability and charge transfer of the electrode and limiting the use of tin-oxide in chemical and electrical energy storage systems.

Numerous studies have been administered to reduce the size of SnO2 to reduce volume expansion, although particle aggregation of nanostructure SnO2 has been reported after numerous charge/discharge cycles. Another option is to use SnO2/Carbon based composite to buffer volume growth as well as to increase conductivity thanks to the wonderful features of carbon-based substances namely chemical inertness, strong electrical permeability, and multi-dimensional composition.

However, most of the SnO2 nanoparticles in these generated SnO2/carbon-based composites are dispersed across the surfaces of the carbon composite material and cannot be securely bonded to the carbon - based materials, allowing SnO2 to aggregate and drop off from the carbon skeleton throughout charge-discharge cycles.

Proposed Solution

In this study, the researchers propose a facile method to develop carbon skeletons for supercapacitors through a carbonization process. This process was determined to enhance the chemical characteristics and stability. The product was developed and tested for its performance by the researchers. The remarkable electrochemical performance reveals that this new carbon skeleton-based active material has boundless deal of possibilities for electrochemical devices.

The Future – What to Look Forward To?

The encouraging electrochemical results of carbon skeletons suggest that a rational design may be used to create a novel flexible electrochemical material that can address the ever-increasing demand for wearable materials as well as other SCs required products. The amount of work done in this field is breaking previously established quality barriers. 

Reference

Li, Z., Zhang, C., Bu, J., Zhang, L., Cheng, L., & Wu, M. (2022). Constructing a novel carbon skeleton to anchor Sn/SnO2 nanodots for flexible supercapacitor with excellent rate capability. Carbon. Available at: https://www.sciencedirect.com/science/article/pii/S0008622322002652?via%3Dihub

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Shaheer Rehan

Written by

Shaheer Rehan

Shaheer is a graduate of Aerospace Engineering from the Institute of Space Technology, Islamabad. He has carried out research on a wide range of subjects including Aerospace Instruments and Sensors, Computational Dynamics, Aerospace Structures and Materials, Optimization Techniques, Robotics, and Clean Energy. He has been working as a freelance consultant in Aerospace Engineering for the past year. Technical Writing has always been a strong suit of Shaheer's. He has excelled at whatever he has attempted, from winning accolades on the international stage in match competitions to winning local writing competitions. Shaheer loves cars. From following Formula 1 and reading up on automotive journalism to racing in go-karts himself, his life revolves around cars. He is passionate about his sports and makes sure to always spare time for them. Squash, football, cricket, tennis, and racing are the hobbies he loves to spend his time in.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Rehan, Shaheer. (2022, April 05). Carbon Skeleton Forms Backbone to Advanced Supercapacitor. AZoNano. Retrieved on November 24, 2024 from https://www.azonano.com/news.aspx?newsID=38935.

  • MLA

    Rehan, Shaheer. "Carbon Skeleton Forms Backbone to Advanced Supercapacitor". AZoNano. 24 November 2024. <https://www.azonano.com/news.aspx?newsID=38935>.

  • Chicago

    Rehan, Shaheer. "Carbon Skeleton Forms Backbone to Advanced Supercapacitor". AZoNano. https://www.azonano.com/news.aspx?newsID=38935. (accessed November 24, 2024).

  • Harvard

    Rehan, Shaheer. 2022. Carbon Skeleton Forms Backbone to Advanced Supercapacitor. AZoNano, viewed 24 November 2024, https://www.azonano.com/news.aspx?newsID=38935.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.