Posted in | News | Quantum Dots

Study Could Help Reduce Environmental Risk of Quantum Dots

Polymers containing quantum dots (QDs) are considered crucial components of next-generation consumer items, but ambiguity remains regarding how these compounds may negatively affect public health and the environment.

Study Could Help Reduce Environmental Risk of Quantum Dots

Study: Surface defects and particle size determine transport of CdSe quantum dots out of plastics and into the environment. Image Credit:Van Pympk/Shutterstock.com

A pre-proof paper from the Journal of Hazardous Materials examines how the transport of quantum dots out of polymeric materials and into the environment relates to their surface and size properties.

Polymer Nanocomposites (PNCs): Overview and Significance

Integrating nanostructured additives such as quantum dots into polymers is a method of producing innovative hybrid compounds such as polymer nanocomposites (PNCs) with improved thermal, physical, and optical characteristics.

PNCs have numerous applications in manufacturing essential products within aerospace and automotive materials, fire retardants, energy storage systems, packaged foods, and medical equipment.

Polymer-to-Liquid Transfer of Quantum Dots in PNCs

Sustainable PNC production necessitates assessing if nanoparticles such as quantum dots migrate into the external environment. The transmission of quantum dots into the nearby liquid environment is particularly important for PNCs utilized in medical equipment or food processing applications.

Several investigations on polymer-to-liquid transport phenomena in PNCs have revealed that the nanomaterial mass transmitted from these PNCs into the liquid environment is minimal but variable in volume and shape due to differences in nanofiller characteristics, external environment, polymer type, and testing conditions.

Despite these advances, the interface chemistry of quantum dots that drive deterioration and transport dynamics, as well as the variables that control these reactions, remain unknown. As a result, it is impossible to determine whether two nominally equivalent PNCs would create more quantum dot exposure to the environment given the same set of working parameters.

Limitations of Previously Used Quantum Dots Transport Models

Theoretical frameworks can aid in the understanding of how quantum dots move from polymeric materials into the environment. While there are various transport models for small molecules, there are only a few significant models in the literature that are explicitly created for nanoparticle compounds, such as quantum dots.

One of the most pressing issues concerning the risk analysis of nanocomposite materials is the absence of data-supported theoretical frameworks for forecasting the movement of quantum dots from PNCs to the external environment.

More  knowledge of nanofiller mass transfer characteristics via theory and experiments can greatly enhance PNC manufacturing and design principles, improving sustainability and lowering the negative effects of next-generation PNCs on the environment.

Highlights of the Current Study

In this study, the researchers created a PNC class utilizing low-density polyethylene (LDPE) as a polymer host and cadmium selenide (CdSe) quantum dots in an assortment of sizes. Because quantum dots are widely available, cover a size range of 1-10 nm, and have minimal size dispersibility, they are suitable models for researching nanoparticle movement from PNCs to the surrounding environment.

The photoluminescence (PL) and composition of the produced PNCs were evaluated to understand how integrating quantum dots in LDPE impacts their interface stoichiometry and surface fault concentration. Various migration studies were carried out to correlate the speed of quantum dot movement with the initial quantum dot diameter and surface reactivity.

This information was then utilized to create a semi-empirical model for predicting the transfer of quantum dots out of polymeric materials and into the surrounding fluid environment.

Important Findings

The researchers observed an inverse relationship between the mass of migratory quantum dots and their original diameter due to smaller particles having a greater specific surface area.

This work also introduced the first theoretical framework capable of modeling the complicated migration process of quantum dots. These models were effectively applied to substrates with a wide variety of starting quantum dots sizes and PNC storage durations. To simulate the movement of quantum dots across polymer and environment interfaces, the framework combines the time-dependent mass expulsion of quantum dots with the diffusion equation under simple boundary conditions.

Based on these findings, it is reasonable to conclude that the theoretical framework developed in this study could be a useful and functional tool for assessing quantum dots migration risks to human health and the environment. This framework can also provide new insights into the physical and chemical processes of the nanomaterials movement phenomena that would be challenging to accomplish using only experimental approaches.

Reference

Duncan, T. V. et al. (2022). Surface defects and particle size determine transport of CdSe quantum dots out of plastics and into the environment. Journal of Hazardous Materials. Available at: https://doi.org/10.1016/j.jhazmat.2022.12968

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Hussain Ahmed

Written by

Hussain Ahmed

Hussain graduated from Institute of Space Technology, Islamabad with Bachelors in Aerospace Engineering. During his studies, he worked on several research projects related to Aerospace Materials & Structures, Computational Fluid Dynamics, Nano-technology & Robotics. After graduating, he has been working as a freelance Aerospace Engineering consultant. He developed an interest in technical writing during sophomore year of his B.S degree and has wrote several research articles in different publications. During his free time, he enjoys writing poetry, watching movies and playing Football.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Ahmed, Hussain. (2022, July 28). Study Could Help Reduce Environmental Risk of Quantum Dots. AZoNano. Retrieved on November 21, 2024 from https://www.azonano.com/news.aspx?newsID=39488.

  • MLA

    Ahmed, Hussain. "Study Could Help Reduce Environmental Risk of Quantum Dots". AZoNano. 21 November 2024. <https://www.azonano.com/news.aspx?newsID=39488>.

  • Chicago

    Ahmed, Hussain. "Study Could Help Reduce Environmental Risk of Quantum Dots". AZoNano. https://www.azonano.com/news.aspx?newsID=39488. (accessed November 21, 2024).

  • Harvard

    Ahmed, Hussain. 2022. Study Could Help Reduce Environmental Risk of Quantum Dots. AZoNano, viewed 21 November 2024, https://www.azonano.com/news.aspx?newsID=39488.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.