Lipid-Based Nanocapsule Drug Delivery Method Smuggles Drug into Cancer Cell before Release

Biomedical engineering researchers have developed an anti-cancer drug delivery method that essentially smuggles the drug into a cancer cell before triggering its release. The method can be likened to keeping a cancer-killing bomb and its detonator separate until they are inside a cancer cell, where they then combine to destroy the cell.

Biomedical engineering researchers have developed an anti-cancer drug delivery method that essentially smuggles the drug into a cancer cell before triggering its release. Credit: Ran Mo

"This is an efficient, fast-acting way of delivering drugs to cancer cells and triggering cell death," says Dr. Ran Mo, lead author of a paper on the work and a postdoctoral researcher in the joint biomedical engineering program at North Carolina State University and the University of North Carolina at Chapel Hill. "We also used lipid-based nanocapsules that are already in use for clinical applications, making it closer to use in the real world."

The technique uses nanoscale lipid-based capsules, or liposomes, to deliver both the drug and the release mechanism into cancer cells. One set of liposomes contains adenosine-5'-triphosphate (ATP), the so-called "energy molecule." A second set of liposomes contains an anti-cancer drug called doxorubicin (Dox) that is embedded in a complex of DNA molecules. When the DNA molecules come into contact with high levels of ATP, they unfold and release the Dox. The surface of the liposomes is integrated with positively charged lipids or peptides, which act as corkscrews to introduce the liposomes into cancer cells.

As the liposomes are absorbed into a cancer cell, they are sealed off from the rest of the cell in an endosome – a compartment that walls off all foreign material that gets into a cell.

The environment inside an endosome is acidic, which causes the Dox liposomes and ATP liposomes to fuse together, as well as to the wall of the endosome itself.

Meanwhile, two other things are happening simultaneously. First, the ATP liposomes spill their ATP into the Dox liposomes, releasing the Dox from its DNA cage. Second, the walls of the Dox liposomes create an opening in the endosome, spilling their Dox-rich contents into the surrounding cell – leading to cell death.

In a mouse model, the researchers found that the new technique significantly decreased the size of breast cancer tumors compared to treatment that used Dox without the nanoscale liposomes.

"This work is somewhat similar to previous research we've done with polymer-based nanogels – but there is a key difference," says Dr. Zhen Gu, senior author of the paper and an assistant professor in the joint biomedical engineering program. "The difference is that this liposome-based technique allows us to introduce additional ATP into the cancer cell, releasing the drug more quickly.

"Being able to adjust ATP levels is important because some cancer cells are ATP deficient," Gu adds. "But this technique would work even in those environments."

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    North Carolina State University. (2019, February 11). Lipid-Based Nanocapsule Drug Delivery Method Smuggles Drug into Cancer Cell before Release. AZoNano. Retrieved on November 21, 2024 from https://www.azonano.com/news.aspx?newsID=30096.

  • MLA

    North Carolina State University. "Lipid-Based Nanocapsule Drug Delivery Method Smuggles Drug into Cancer Cell before Release". AZoNano. 21 November 2024. <https://www.azonano.com/news.aspx?newsID=30096>.

  • Chicago

    North Carolina State University. "Lipid-Based Nanocapsule Drug Delivery Method Smuggles Drug into Cancer Cell before Release". AZoNano. https://www.azonano.com/news.aspx?newsID=30096. (accessed November 21, 2024).

  • Harvard

    North Carolina State University. 2019. Lipid-Based Nanocapsule Drug Delivery Method Smuggles Drug into Cancer Cell before Release. AZoNano, viewed 21 November 2024, https://www.azonano.com/news.aspx?newsID=30096.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.