Newly developed tiny antennas, likened to spotlights on the nanoscale, offer the potential to measure food safety, identify pollutants in the air and even quickly diagnose and treat cancer, according to the Australian scientists who created them. The new antennas are cubic in shape. They do a better job than previous spherical ones at directing an ultra-narrow beam of light where it is needed, with little or no loss due to heating and scattering, they say.
A collaboration between researchers from KEK, the Institute for Basic Science (IBS), the Korea Advanced Institute of Science and Technology (KAIST), RIKEN, and the Japan Synchrotron Radiation Research Institute (JASRI) used the SACLA X-ray free electron laser (XFEL) facility for a real time visualization of the birth of a molecular that occurs via photoinduced formation of a chemical bonds. This achievement was published in the online version of the scientific journal "Nature" (published on 19 February 2015).
Most lenses are, by definition, curved. After all, they are named for their resemblance to lentils, and a glass lens made flat is just a window with no special powers.
Enhancing the electron emission of multiwall carbon nanotubes (MWCNT) is key for applications ranging from cold cathodes used in high-resolution electron microscopes to portable X-ray imaging systems. In a paper recently published in Nanotechnology, a team led by Professor My Ali El Khakani, from the Energie Matériaux Télécommunications Research Centre of INRS (INRS-EMT), has reported an original approach for the development of novel graphenated-MWCNTs with enhanced field electron emission (FEE) properties.
Compact, sensitive and fast nanodetectors are considered to be somewhat of a "Holy Grail" sought by many researchers around the world. And now a team of scientists in Italy and France has been inspired by nanomaterials and has created a novel solid-state technology platform that opens the door to the use of terahertz (THz) photonics in a wide range of applications.
Gigaphoton Inc., a major lithography light source manufacturer, announced today that it has successfully achieved continuous operation of 140W EUV light source at 50 percent duty cycle on its prototype laser-produced plasma (LPP) light sources for EUV lithography scanners. It is widely believed that 140W is the output power required by EUV light sources for mass production applications.
Gigaphoton Inc., a major lithography light source manufacturer, announced today that it will begin shipment of its newest ArF Excimer laser, GT64A4, in February.
Researchers at the University of Surrey's Advanced Technology Institute manipulated zinc oxide, producing nanowires from this readily available material to create a ultra-violet light detector which is 10,000 times more sensitive to UV light than a traditional zinc oxide detector.
Scientists from Ghent University and imec announce today that they demonstrated interaction between light and sound in a nanoscale area. Their findings elucidate the physics of light-matter coupling at these scales – and pave the way for enhanced signal processing on mass-producible silicon photonic chips.
Northwestern University researchers have created a new technique that can transform silver into any color of the rainbow. Their simple method is a fast, low-cost alternative to color filters currently used in electronic displays and monitors.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.