Synopsys, Inc. (Nasdaq:SNPS), a global leader providing software, IP and services used to accelerate innovation in chips and electronic systems, today announced a new release of its DesignWare® STAR Memory System®, an automated pre- and post-silicon memory test, debug, diagnostic and repair solution that enables designers to improve quality of results (QoR), reduce design time, lower test costs and optimize manufacturing yield.
Berkeley Design Automation, Inc., provider of the world’s fastest nanometer circuit verification, today announced that Episil Technology, Inc., a pure-play foundry house specializing in epitaxial and silicon wafer foundry services for power and analog semiconductor products, has selected the company’s AFS Nano SPICE simulator for analog and power device characterization.
A Northwestern University research team has found a way to manufacture single laser devices that are the size of a virus particle and that operate at room temperature. These plasmonic nanolasers could be readily integrated into silicon-based photonic devices, all-optical circuits and nanoscale biosensors.
Demonstrating unparalleled enthusiasm for New York’s nanotechnology industry as it rises to global prominence under the leadership of Governor Andrew Cuomo, a record crowd of more than 1,500 people participated today in Community Day at the College of Nanoscale Science and Engineering (CNSE) of the University at Albany, receiving a firsthand look at the science that is revolutionizing nearly every facet of society, from ultra-fast electronics, green energy and a cleaner environment to improved health care and advanced military and homeland security technologies.
Dr. Jorge M. Seminario, holder of the Fox Professorship and a professor in the Artie McFerrin Department of Chemical Engineering, was recognized at the 2012 HENAAC Conference, powered by Great Minds in STEM.
The National Physical Laboratory (NPL), along with partners In2Tec Ltd (UK) and Gwent Electronic Materials Ltd, have developed a printed circuit board (PCB) whose components can be easily separated by immersion in hot water.
Using a new method for precisely controlling the deposition of carbon, researchers have demonstrated a technique for connecting multi-walled carbon nanotubes to the metallic pads of integrated circuits without the high interface resistance produced by traditional fabrication techniques.
In the relatively new scientific frontier of topological insulators, theoretical and experimental physicists have been studying the surfaces of these unique materials for insights into the behavior of electrons that display some very un-electron-like properties.
A multinational research team has discovered filamentous bacteria that function as living power cables in order to transmit electrons thousands of cell lengths away.
Scientists in the Advanced Materials and Nanosystems directorate at the Lockheed Martin Space Systems Advanced Technology Center (ATC) in Palo Alto have developed a revolutionary nanotechnology copper-based electrical interconnect material, or solder, that can be processed around 200 °C. Once fully optimized, the CuantumFuse™ solder material is expected to produce joints with up to 10 times the electrical and thermal conductivity compared to tin-based materials currently in use. Applications in military and commercial systems are currently under consideration.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.