Posted in | News | Nanofabrication

Using Mathematical Algorithm to Predict Precise Shape of Metal Nanostructures Evaporated on Array of Spheres

Plasmonic structures are metallic nanostructures that can be used to manipulate light on very small scales, so they are investigated intensively for applications ranging from optical circuits and enhanced solar cells to biosensing and imaging.

One of the methods to fabricate plasmonic structures is to evaporate metals on dense arrays of small spheres, which results in wide variety of shapes. Researchers therefore need a way to predict the precise shape of these tiny structures so that they can be produced successfully on a commercial scale. This is now possible using a mathematical algorithm developed by a team of researchers led by Xiadong Zhou of the A*STAR Institute of Materials Research and Engineering in Singapore.

Plasmonic devices are based on the wave-like motion of electrons on metallic surfaces. These ‘surface plasmons’ interact strongly with light of a matching frequency, and can create high-intensity light fields that are suitable for photonic applications.

Click here to read the full article

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.