New Insight on Material Bonding Aids Efficient Microchip Development

An approach pioneered by researchers at North Carolina State University gives scientists new insight into the way silicon bonds with other materials at the atomic level.

This technique could lead to improved understanding of and control over bond formation at the atomic level, and opportunities for the creation of new devices and more efficient microchips.

Manufacturers build silicon-based devices from layers of different materials. Bonds – the chemical interaction between adjacent atoms – are what give materials their distinctive characteristics. "Essentially, a bond is the glue that holds two atoms together, and it is this glue that determines material properties, like hardness and transparency," says Dr. Kenan Gundogdu, assistant professor of physics at NC State and co-author of the research. "Bonds are formed as materials come together. We have influenced the assembly process of silicon crystals by applying strain during bond formation. Manufacturers know that strain makes a difference in how bonds form, but up to now there hasn't been much understanding of how this works on the atomic level."

Gundogdu, along with Dr. David Aspnes, Distinguished University Professor of Physics, and doctoral candidate Bilal Gokce, used optical spectroscopy along with a method of analysis pioneered by Aspnes and former graduate student Dr. Eric Adles that allowed them to examine what was happening on the atomic scale when strain was applied to a silicon crystal.

"Strain has been used to affect overall chemistry for a long time," Aspnes says. "However, no one has previously observed differences in chemical behavior of individual bonds as a result of applying strain in one direction. Now that we can see what is actually happening, we'll gain a much better understanding of its impact on the atomic scale, and ideally be able to put it to use."

According to Gundogdu, "Application of even small amount of strain in one direction increases the chemical reactivity of bonds in certain direction, which in turn causes structural changes. Up to now, strain has been applied when devices are made. But by looking at the effect on the individual atomic bonds we now know that we can influence chemical reactions in a particular direction, which in principle allows us to be more selective in the manufacturing process."

The research appears online in the Sept. 27 Proceedings of the National Academy of Sciences.

"While we are able to exert some directional control over reaction rates, there remains much that we still don't understand," Aspnes adds. "Continuing research will allow us to identify the relevant hidden variables, and silicon-based devices may become more efficient as a result."

Source: http://www.ncsu.edu/

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    North Carolina State University. (2019, February 13). New Insight on Material Bonding Aids Efficient Microchip Development. AZoNano. Retrieved on November 21, 2024 from https://www.azonano.com/news.aspx?newsID=19910.

  • MLA

    North Carolina State University. "New Insight on Material Bonding Aids Efficient Microchip Development". AZoNano. 21 November 2024. <https://www.azonano.com/news.aspx?newsID=19910>.

  • Chicago

    North Carolina State University. "New Insight on Material Bonding Aids Efficient Microchip Development". AZoNano. https://www.azonano.com/news.aspx?newsID=19910. (accessed November 21, 2024).

  • Harvard

    North Carolina State University. 2019. New Insight on Material Bonding Aids Efficient Microchip Development. AZoNano, viewed 21 November 2024, https://www.azonano.com/news.aspx?newsID=19910.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.