Posted in | News | Nanoelectronics

Argonne Researchers Get 65 Million Hours of Computing Time on Supercomputer

Four researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory lead projects that have been awarded a total of 65 million hours of computing time on Argonne's energy-efficient Blue Gene/P ("Intrepid") supercomputer.

The researchers will conduct advanced simulation and analysis, performing virtual experiments that would be almost impossible and impractical in the natural world. They will also develop scalable system software needed to fully harness the power of supercomputers.

"The Department of Energy's supercomputers provide an enormous competitive advantage for the United States," said Energy Secretary Steven Chu. "This is a great example of how investments in innovation can help lead the way to new industries, new jobs and new opportunities for America to succeed in the global marketplace."

The Argonne-led projects are among 57 high-impact research projects aimed at breakthroughs in clean energy, climate science and fundamental research. DOE's Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program enables scientists and engineers to conduct cutting-edge research in just weeks or months, rather than years or decades, by providing access and support to powerful supercomputing resources at DOE's Leadership Computing Facilities at Argonne National Laboratory in Illinois and Oak Ridge National Laboratory in Tennessee.

"By providing millions of hours of computing time on Argonne's Intrepid and the Cray XT5 ("Jaguar") at Oak Ridge, the DOE INCITE awards allow us to address some of the nation's most challenging scientific problems," said Rick Stevens, associate laboratory director for computing, environment and life sciences at Argonne.

The projects, selected competitively based on their potential to advance scientific discovery, range from improving battery technology to better understanding health and disease. They are profiled below in brief summaries. A full listing of awards, with detailed technical descriptions, is available online on the Advanced Scientific Computing Research website.

Paul Fischer, a senior computational scientist, was awarded 25 million hours on the Intrepid to conduct simulation and analysis of advanced nuclear reactor designs. "Advanced simulation is a critical component in bringing advanced reactor technology to fruition in an economic and timely manner," said Fischer.

As part of Argonne's Simulation-Based High-Efficiency Advanced Reactor Prototyping (SHARP) project, Fischer and his team are studying open questions concerning the thermal-hydraulic performance of several components in next-generation reactors. Thermal-hydraulic performance issues figure prominently in understanding how to design safe and efficient reactors; they include coolant mixing, pumping requirements and natural circulation, under a variety of operating conditions.

Andrew Binkowski, a structural biologist, leads an Argonne team in applying the most advanced methods in biomolecular simulations and analysis to further our understanding of human health and disease. "A major obstacle to accurate biomolecular modeling is the number of approximations necessary to make the runtime feasible," said Binkowski. "The vast computing resources now remove some of these constraints, allowing us to study more advanced physics-based methods." Binkowski and his team will use the 20 million hours of computer time awarded on the Intrepid to study protein-ligand binding interactions. The team will also evaluate and validate the predictive power of bimolecular simulations through collaboration with the Center for Structural Genomics of Infectious Diseases.

Jeff Greeley, a materials scientist, was awarded 15 million hours of supercomputing time on Argonne's Intrepid to continue an investigation of materials at the nanoscale (a nanometer is one billionth of a meter). Greeley leads a collaboration seeking to understand the electronic and chemical properties of metal particles across the nanoscale regime.

"We expect to gain a comprehensive, first-principles-based picture of how the catalytic and electronic properties of a diverse array of metal nanoparticles evolve," he said. "Such information will ultimately assist in the design of enhanced nanocatalysts."

Ewing (Rusty) Lusk, director of Argonne's Mathematics and Computer Science Division, was awarded 5 million processor hours on the Intrepid to improve the performance and productivity of key system software components. Lusk heads a team investigating message-passing libraries, parallel input/output, data visualization and operating systems on high-performance computer systems. "Through rigorous experimentation, analysis and design cycles," he said, "we hope to dramatically enhance the capabilities not only of the current systems but of all systems pushing scalability limits in the near future."

Argonne researchers will also participate in six other INCITE projects. Four of the projects are new, and two are renewals.

  • Vitali Morozov and Michael Papka will be collaborating with colleagues at Brown University in multiscale blood-flow simulations. This new project, awarded 50 million processor hours, will involve realistic simulations of brain pathologies, such as cerebral aneurysms and sickle cell anemia.
  • Charles Bacon will work with researchers at the University of Chicago and the University of Illinois at Urbana-Champaign to conduct simulations of the transition from deflagration to detonation in reactive gases. The new project, awarded 18 million processor hours on the Intrepid, will help scientists understand and eventually predict the onset of detonation in engineering devices.
  • Steven Pieper, together with colleagues from three other national laboratories and two universities, will conduct state-of-the-art simulations to better understand the structure and reactions of nuclei. The calculations, to be carried out on both the Intrepid (15 million processor hours) and the Jaguar at Oak Ridge National Laboratory (43 million processor hours), are relevant to applications in nuclear energy, nuclear security and nuclear astrophysics.
  • Rob Jacob will work with colleagues from the National Center for Atmospheric Studies and several other national laboratories and research institutions in cutting-edge climate science research. The project, awarded the highest allocation of all the INCITE projects — 40 million processor hours on the Intrepid and 70 million processor hours on the Jaguar — will conduct global high-resolution simulations, providing critical information for national science policy.
  • Graham Fletcher will continue work with colleagues at Iowa State University in a study of the prediction of bulk properties of water systems. These molecular-scale problems are of critical importance to national-priority scientific issues. The project has been awarded 10 million processor hours on the Intrepid.
  • Ray Bair will continue an investigation of lithium-air batteries, a promising new technology for practical propulsion batteries. The project, led by Oak Ridge National Laboratory, will be conducted using both the Argonne Intrepid (25 million processor hours) and the Oak Ridge Jaguar (10 million processor hours).

Source: http://www.anl.gov/

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Argonne National Laboratory. (2019, February 13). Argonne Researchers Get 65 Million Hours of Computing Time on Supercomputer. AZoNano. Retrieved on November 21, 2024 from https://www.azonano.com/news.aspx?newsID=20775.

  • MLA

    Argonne National Laboratory. "Argonne Researchers Get 65 Million Hours of Computing Time on Supercomputer". AZoNano. 21 November 2024. <https://www.azonano.com/news.aspx?newsID=20775>.

  • Chicago

    Argonne National Laboratory. "Argonne Researchers Get 65 Million Hours of Computing Time on Supercomputer". AZoNano. https://www.azonano.com/news.aspx?newsID=20775. (accessed November 21, 2024).

  • Harvard

    Argonne National Laboratory. 2019. Argonne Researchers Get 65 Million Hours of Computing Time on Supercomputer. AZoNano, viewed 21 November 2024, https://www.azonano.com/news.aspx?newsID=20775.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.