Researchers at the National Institute of Standards and Technology (NIST) and the North Dakota State University (NDSU) have together shown the linkage between the durability and flexibility of carbon nanotube coatings and films and their electronic properties.
Metallic single-wall carbon nanotubes transport charge very easily when they come into contact with each other due to their high interfacial conductivity. The degree of flexibility that they can undergo without modifying their structure and their conductive nature demonstrate their potentiality for applications that require mechanical durability and electronic performance.
Erik Hobbie, Ph.D., of NDSU led the research team. Steven D. Hudson, Jeffrey A. Fagan and Ji Yeon Huh, researchers at NIST, Anna K. Bernhardt, a high school junior from North Dakota Governor’s School, Ganjigunte R. Swathi Iyer, a postdoctoral researcher and John M. Harris, an NDSU graduate, were part of the research team.
Carbon nanotube coatings and films have generated a high level of interest for applications for solar cells, clothing and similar devices that require flexible or foldable transparent electrodes. Presently, the expensive indium tin oxide is being in solar cells and touch screen applications. But, the material is brittle and hence cannot be used for foldable electronic applications. Thin films that are made from single-wall carbon nanotubes can be used instead of indium tin oxide in photovoltaic devices and liquid crystal displays. This study demonstrates the advantages of carbon nanotube metallic films.
North Dakota is providing the funds for the participation by students. This opportunity enables students to experience nanotechnology research first-hand. The U.S. Department of Energy and the National Science Foundation have supported the research and ACS Nano has published the results of the study.