Posted in | News | Nanoanalysis | Graphene

Electronic Spin State of Graphene Contacted to Magnetic Metal Detected

Using a spin-polarized metastable helium beam, a research group of the Japan Atomic Energy Agency (JAEA) and the National Institute for Materials Science (NIMS) succeeded in detecting the electronic spin state of only the graphene contacted to a magnetic metal in devices.

Using a spin-polarized metastable helium beam, a group headed by Dr. Shiro Entani, who is a limited-term researcher at the Advanced Science Research Center, Japan Atomic Energy Agency (President: Shojiro Matsuura) and Dr. Yasushi Yamauchi, a Group Leader in the Nano Characterization Unit, National Institute for Materials Science (President: Sukekatsu Ushioda) succeeded in detecting the electronic spin state of only the graphene contacted to a magnetic metal in devices.

Graphene is considered a promising substrate material for next-generation spintronics, as it possesses many properties that are suitable for transmission of electronic spin information. In order to utilize graphene in spin devices, techniques for controlling its spin state are indispensable, and among these, the development of a spin injection technique using a magnetic electrode is a key issue. In developing these techniques, first, it is necessary to know the spin state of the graphene which is contacted to the magnetic metal electrode. It was difficult, however, for conventional techniques to selectively obtain the spin information of the graphene because the weak signal from the graphene, which comprises a single atomic layer, is buried in the strong signal from the magnetic substrate.

In this study, the JAEA-NIMS research group succeeded for the first time in observing the electronic spin state of only the graphene by measuring a junction of graphene and magnetic metal (nickel) with a spin-polarized metastable helium (He) beam. The results revealed that, in conduction electrons of graphene contacted to nickel, spin polarization occurs with the same orientation as the spin of the nickel.

This research achievement is expected to greatly advance research on the spin properties of various 2-dimensional materials including graphene which are a focus of attention as new spintronics materials, as well as device applications such as development of spin injection techniques, etc.

These results were published in the online edition of the scientific journal "CARBON."

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.