Posted in | News | Graphene

Novel Technique to Improve Stretchability of Graphene

Researchers from North Carolina State University and the University of Texas have revealed more about graphene’s mechanical properties and demonstrated a technique to improve the stretchability of graphene – developments that should help engineers and designers come up with new technologies that make use of the material.

Graphene is a promising material that is used in technologies such as transparent, flexible electrodes and nanocomposites. And while engineers think graphene holds promise for additional applications, they must first have a better understanding of its mechanical properties, including how it works with other materials.

“This research tells us how strong the interface is between graphene and a stretchable substrate,” says Dr. Yong Zhu, an associate professor of mechanical and aerospace engineering at NC State and co-author of a paper on the work. “Industry can use that to design new flexible or stretchable electronics and nanocomposites. For example, it tells us how much we can deform the material before the interface between graphene and other materials fails. Our research has also demonstrated a useful approach for making graphene-based, stretchable devices by ‘buckling’ the graphene.”

The researchers looked at how a graphene monolayer – a layer of graphene only one atom thick – interfaces with an elastic substrate. Specifically, they wanted to know how strong the bond is between the two materials because that tells engineers how much strain can be transferred from the substrate to the graphene, which determines how far the graphene can be stretched.

The researchers applied a monolayer of graphene to a polymer substrate, and then stretched the substrate. They used a spectroscopy technique to monitor the strain at various points in the graphene. Strain is a measure of how far a material has stretched.

Initially, the graphene stretched with substrate. However, while the substrate continued to stretch, the graphene eventually began to stretch more slowly and slide on the surface instead. Typically, the edges of the monolayer began to slide first, with the center of the monolayer stretching further than the edges.

“This tells us a lot about the interface properties of the graphene and substrate,” Zhu says. “For the substrate used in this study, polyethylene terephthalate, the edges of the graphene monolayer began sliding after being stretched 0.3 percent of its initial length. But the center continued stretching until the monolayer had been stretched by 1.2 to 1.6 percent.”

The researchers also found that the graphene monolayer buckled when the elastic substrate was returned to its original length. This created ridges in the graphene that made it more stretchable because the material could stretch out and back, like the bellows of an accordion. The technique for creating the buckled material is similar to one developed by Zhu’s lab for creating elastic conductors out of carbon nanotubes.

The paper, “Interfacial Sliding and Buckling of Monolayer Graphene on a Stretchable Substrate,” was published online Aug. 1 in Advanced Functional Materials. Lead author of the paper is Dr. Tao Jiang, a postdoctoral researcher at NC State. The paper was co-authored by Dr. Rui Huang of the University of Texas. The research was funded by the National Science Foundation (NSF) and the NSF’s ASSIST Engineering Research Center at NC State.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    North Carolina State University. (2019, February 11). Novel Technique to Improve Stretchability of Graphene. AZoNano. Retrieved on November 21, 2024 from https://www.azonano.com/news.aspx?newsID=27983.

  • MLA

    North Carolina State University. "Novel Technique to Improve Stretchability of Graphene". AZoNano. 21 November 2024. <https://www.azonano.com/news.aspx?newsID=27983>.

  • Chicago

    North Carolina State University. "Novel Technique to Improve Stretchability of Graphene". AZoNano. https://www.azonano.com/news.aspx?newsID=27983. (accessed November 21, 2024).

  • Harvard

    North Carolina State University. 2019. Novel Technique to Improve Stretchability of Graphene. AZoNano, viewed 21 November 2024, https://www.azonano.com/news.aspx?newsID=27983.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.