Superabsorbing Design Boosts Light Absorption Efficiency of Thin Film Solar Cells

Researchers from North Carolina State University have developed a "superabsorbing" design that may significantly improve the light absorption efficiency of thin film solar cells and drive down manufacturing costs.

This is a diagram of a "superabsorbing" design that may significantly improve the light absorption efficiency of thin film solar cells and drive down manufacturing costs. Credit: Linyou Cao

The superabsorbing design could decrease the thickness of the semiconductor materials used in thin film solar cells by more than one order of magnitude without compromising the capability of solar light absorption.

"State-of-the-art thin film solar cells require an amorphous silicon layer that is about 100 nanometers (nm) thick to capture the majority of the available solar energy," says Dr. Linyou Cao, an assistant professor of materials science and engineering at NC State and senior author of a paper describing the work. "The structure we're proposing can absorb 90 percent of available solar energy using only a 10 nm thick layer of amorphous silicon.

"The same is true for other materials. For example, you need a cadmium telluride layer that is one micrometer thick to absorb solar energy, but our design can achieve the same results with a 50 nm thick layer of cadmium telluride. Our design can also enable a 30 nm thick layer of copper indium gallium selenide to fully absorb solar light. That's a huge advance."

Cao notes that the deposition of semiconductor materials stands as a major bottleneck for improving manufacturing productivity and lowering the cost of thin film solar cells. "A decrease in the thickness of semiconductor materials by one order of magnitude would mean a substantial improvement in manufacturing productivity and reduction in cost," Cao says, because the cells would use less material and the thin films could be deposited more quickly.

In cross-section, the new design looks like a rectangular onion. The light-absorbing semiconductor material coats a rectangular core. The semiconductor, in turn, is coated by three layers of anti-reflective coating that do not absorb light.

To develop the design, the researchers began by examining the maximum light absorption efficiency of semiconductor materials using light-trapping techniques. They found that maximizing solar absorption requires a design in which the light-trapping efficiency for solar light is equal to the intrinsic absorption efficiency of the semiconductor materials. In other words, in order to maximize solar absorption, you need to match the amount of solar light trapped inside the structure and the amount of solar light that could be absorbed. The researchers then designed the onion-like structures to match their light-trapping efficiency with the absorption efficiency of the semiconductor materials in thin film solar cells.

"We first theoretically predicted the maximum solar light absorption efficiency in given semiconductor materials, and then proposed a design that could be readily fabricated to achieve the predicted maximum. We developed a new model to do this work, because we felt that existing models were not able to find the upper limit for the solar absorption of real semiconductor materials," Cao says "And if this works the way we think it will, it would fundamentally solve light-absorption efficiency problems for thin film solar cells.

"The superabsorbing structure is designed for the convenience of fabrication, and we are looking for partners to produce and test this design," Cao adds. "The structure should be very easy to produce with standard thin film deposition and nanolithography techniques. We are happy to work with industry partners to implement this design in the production of next-generation solar cells."

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    North Carolina State University. (2019, February 11). Superabsorbing Design Boosts Light Absorption Efficiency of Thin Film Solar Cells. AZoNano. Retrieved on November 21, 2024 from https://www.azonano.com/news.aspx?newsID=29494.

  • MLA

    North Carolina State University. "Superabsorbing Design Boosts Light Absorption Efficiency of Thin Film Solar Cells". AZoNano. 21 November 2024. <https://www.azonano.com/news.aspx?newsID=29494>.

  • Chicago

    North Carolina State University. "Superabsorbing Design Boosts Light Absorption Efficiency of Thin Film Solar Cells". AZoNano. https://www.azonano.com/news.aspx?newsID=29494. (accessed November 21, 2024).

  • Harvard

    North Carolina State University. 2019. Superabsorbing Design Boosts Light Absorption Efficiency of Thin Film Solar Cells. AZoNano, viewed 21 November 2024, https://www.azonano.com/news.aspx?newsID=29494.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.