Gadolinium Stably Associates with Nanoparticles and Helps Produce Clear Diagnostic Images

A new nanoparticle design, inspired by cell membranes, has led to clearer MRI images and paved the way for better diagnostic tools

This image shows University of Illinois faculty members, including Roger Adams Professor of Chemistry Steven C. Zimmerman (left), with Associate Professor of Chemical and Biomolecular Engineering Hyunjoon Kong, and graduate student Cartney Smith. Credit: Photo by L. Brian Stauffer, provided courtesy of University of Illinois.

When University of Illinois Associate Professor of Chemical and Biomolecular Engineering Hyunjoon Kong, graduate student Cartney Smith, and colleagues set out to improve MR imaging (MRI), they turned current contrast agent technology on its head—or rather, they turned it inside out. The new compound they designed in collaboration with Illinois' Roger Adams Professor of Chemistry Steven C. Zimmerman is not only more effective, but also self-assembling. Kong is also a member of the Regenerative Biology and Tissue Engineering research theme at the Institute for Genomic Biology.

When doctors perform an MRI, they administer a contrast agent: a chemical that, when injected into the bloodstream or ingested by the patient just before the MRI, improves the clarity of structures or organs in the resulting image. One common class of contrast agent, often used for imaging of blood vessels and internal bleeding, contains gadolinium, a rare-earth metal.

Recently, biomedical researchers have found ways to increase the effectiveness of certain contrast agents by associating them with nanoparticles. The contrast agent being used is packaged inside or bonded to the surface of microscopic particles, which can be designed to target certain regions of the body or prolong the agent's activity.

Researchers are now exploring the multipurpose use of nanoparticles. If particles could be loaded with several types of contrast agents or dyes instead of one, or a contrast agent along with another type of diagnostic aid or a medication, doctors could more efficiently test for and treat conditions, and limit the number of injections received by patients.

Just like toddlers sharing a new toy, though, compounds packaged together into a nanoparticle cannot always play well together. For example, contrast agents may bind to other chemicals, reducing their effectiveness. In addition, when contrast agents are enclosed inside a nanoparticle, they may not work as well. Attempts to attach agents to the outer surface of nanoparticles via covalent formation are also problematic, as they can negatively affect the activity of the nanoparticles or the compounds that they carry.

Kong, Smith and colleagues tackled these challenges by using interactions between naturally occurring biomolecules as a guide. Many types of proteins are strongly attached to cell membranes not by covalent bonds, but by the sum of multiple weaker forces—the attraction of positive and negative charges, and the tendency of non-polar (oil-like) substances to seek each other and avoid water.

The group hypothesized that the same types of forces could be used to attach a contrast agent to the surface of a type of nanoparticle called a liposome, which resembles a little piece of cell membrane in the shape of a tiny bubble. The researchers designed a "fastener" molecule, DTPA-chitosan-g-C18, that is charged, attracting it to the liposome and binding it to the contrast agent gadolinium. A nonpolar region anchors it to the liposome membrane.

In a series of experiments reported in a recent ACS Nano article (DOI: 10.1021/nn4026228), Kong and others demonstrated that their fastener molecule readily inserted itself into the membrane of pre-made liposomes. Gadolinium stably associated with the modified nanoparticles in solution, and experiments in animal models showed that these nanoparticles produced clear diagnostic images.

"The strategy works like Velcro on a molecular level to adhere functional units to the outer leaflet of a liposome," said Smith, who was first author on the study. "This work represents a new material design strategy that is scalable and easily implemented. The development of improved contrast agents has the potential to directly impact patients' lives by detecting damaged blood vessels."

One of the difficulties of working with liposomes is their tendency to degrade inside the body. When the fastener-loaded liposomes degraded, some of the efficacy of the gadolinium was lost. In a second study published in Langmuir (DOI: 10.1021/la500412r), Kong and Smith developed a process for chemically cross-linking the components of the nanoparticle that prolonged the life of the nanoparticles in biological conditions.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    University of Illinois at Urbana-Champaign. (2019, February 11). Gadolinium Stably Associates with Nanoparticles and Helps Produce Clear Diagnostic Images. AZoNano. Retrieved on November 21, 2024 from https://www.azonano.com/news.aspx?newsID=30188.

  • MLA

    University of Illinois at Urbana-Champaign. "Gadolinium Stably Associates with Nanoparticles and Helps Produce Clear Diagnostic Images". AZoNano. 21 November 2024. <https://www.azonano.com/news.aspx?newsID=30188>.

  • Chicago

    University of Illinois at Urbana-Champaign. "Gadolinium Stably Associates with Nanoparticles and Helps Produce Clear Diagnostic Images". AZoNano. https://www.azonano.com/news.aspx?newsID=30188. (accessed November 21, 2024).

  • Harvard

    University of Illinois at Urbana-Champaign. 2019. Gadolinium Stably Associates with Nanoparticles and Helps Produce Clear Diagnostic Images. AZoNano, viewed 21 November 2024, https://www.azonano.com/news.aspx?newsID=30188.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.