Posted in | News | Nanomedicine | Nanomaterials

Nanotechnology Company Makes Breakthrough on Cancer Therapy Target

Minerva Biotechnology, a leading nanotechnology, cancer and stem cell development company today announced a major breakthrough in a cancer target that is widely expressed in human cancers. Minerva used its proprietary nanoparticle technology to elucidate a key molecular mechanism that is involved in cancer cell growth and metastasis. The study, published today in the journal PLoS ONE (http://www.plosone.org/doi/pone.0002054) focuses on a cell surface receptor, called MUC1, which according to extensive scientific literature is aberrantly expressed on 75% of all human solid tumors – 96% of breast cancers, 47% of prostate cancers, as well as high percentages of ovarian, colorectal, non-small cell lung, and pancreatic cancers. Circulating MUC1 is currently used as a diagnostic marker for breast cancer and over expression also has been shown by many studies to be correlated with poor clinical outcome.

Using its unique nanoparticle research platform, Minerva has shown that MUC1 is actually cleaved to a new form, called MUC1* (‘star’). Once cleaved, MUC1* dimerizes with itself and other growth factor receptors through binding of a newly discovered ligand for MUC1*, called NM23. Binding and dimerization then acts to activate the tumor to unregulated cell growth, invasion and metastasis. Blocking MUC1* dimerization and NM23 binding leads to cancer cell death. Minerva has identified both antibody-based and small molecule therapeutics that disable the receptor and block cancer cell growth.

This new discovery may also lead to better diagnostics. In collaboration with a leading diagnostic reference lab in California, Minerva has shown that MUC1* is expressed to much higher levels than MUC1 in a variety of human tumor tissues, and in the future could provide both diagnostic and prognostic information on tumor development.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.