Posted in | News | Nanomedicine

Report Examines the Fundamentals of RNAi's Technologies, Markets and Companies

Research and Markets has announced the addition of Jain PharmaBiotech's new report "RNAi - Technologies, Markets and Companies" to their offering.

RNA interference (RNAi) or gene silencing involves the use of double stranded RNA (dsRNA). Once inside the cell, this material is processed into short 21-23 nucleotide RNAs termed siRNAs that are used in a sequence-specific manner to recognize and destroy complementary RNA. The report compares RNAi with other antisense approaches using oligonucleotides, aptamers, ribozymes, peptide nucleic acid and locked nucleic acid.

Various RNAi technologies are described, along with design and methods of manufacture of siRNA reagents. These include chemical synthesis by in vitro transcription and use of plasmid or viral vectors. Other approaches to RNAi include DNA-directed RNAi (ddRNAi) that is used to produce dsRNA inside the cell, which is cleaved into siRNA by the action of Dicer, a specific type of RNAse III. MicroRNAs are derived by processing of short hairpins that can inhibit the mRNAs. Expressed interfering RNA (eiRNA) is used to express dsRNA intracellularly from DNA plasmids.

Delivery of therapeutics to the target tissues is an important consideration. siRNAs can be delivered to cells in culture by electroporation or by transfection using plasmid or viral vectors. In vivo delivery of siRNAs can be carried out by injection into tissues or blood vessels or use of synthetic and viral vectors.

Because of its ability to silence any gene once the sequence is known, RNAi has been adopted as the research tool to discriminate gene function. After the genome of an organism is sequenced, RNAi can be designed to target every gene in the genome and target for specific phenotypes. Several methods of gene expression analysis are available and there is still need for sensitive methods of detection of gene expression as a baseline and measurement after gene silencing. RNAi microarray has been devised and can be tailored to meet the needs for high throughput screens for identifying appropriate RNAi probes. RNAi is an important method for analyzing gene function and identifying new drug targets that uses double-stranded RNA to knock down or silence specific genes. With the advent of vector-mediated siRNA delivery methods it is now possible to make transgenic animals that can silence gene expression stably. These technologies point to the usefulness of RNAi for drug discovery.

RNAi can be rationally designed to block the expression of any target gene, including genes for which traditional small molecule inhibitors cannot be found. Areas of therapeutic applications include virus infections, cancer, genetic disorders and neurological diseases. Side effects can result from unintended interaction between an siRNA compound and an unrelated host gene. If RNAi compounds are designed poorly, there is an increased chance for non-specific interaction with host genes that may cause adverse effects in the host.

154 companies involved in developing RNAi technologies are presented along with 199 collaborations. They're a mix of companies that supply reagents and technologies (nearly half) and companies that use the technologies for drug discovery. From these, 30 are developing RNAi-based therapeutics and 23 involved in microRNAs. Bibliography contains selected 500 publications that are in the report. The text is supplemented with 32 tables and 10 figures.

Chapters List

  1. Technologies for suppressing gene function
  2. RNAi Technologies
  3. MicroRNA
  4. Methods of delivery in RNAi
  5. RNAi in Research
  6. RNAi in drug discovery
  7. Therapeutic applications of RNAi
  8. Safety, regulatory and patent issues
  9. Markets for RNAi Technologies
  10. Companies involved in RNAi Technologies
  11. References

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Research and Markets. (2019, February 14). Report Examines the Fundamentals of RNAi's Technologies, Markets and Companies. AZoNano. Retrieved on November 21, 2024 from https://www.azonano.com/news.aspx?newsID=9841.

  • MLA

    Research and Markets. "Report Examines the Fundamentals of RNAi's Technologies, Markets and Companies". AZoNano. 21 November 2024. <https://www.azonano.com/news.aspx?newsID=9841>.

  • Chicago

    Research and Markets. "Report Examines the Fundamentals of RNAi's Technologies, Markets and Companies". AZoNano. https://www.azonano.com/news.aspx?newsID=9841. (accessed November 21, 2024).

  • Harvard

    Research and Markets. 2019. Report Examines the Fundamentals of RNAi's Technologies, Markets and Companies. AZoNano, viewed 21 November 2024, https://www.azonano.com/news.aspx?newsID=9841.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.