Printing of Microchannels in Polymers Takes a Step Forward But Fine-Tuning is Still Required

Microfluidic devices are used in a variety of life science applications but, because they are typically disposed of after a single use to avoid cross-contamination, finding a cost-effective, high-throughput method for their mass-production is vital. Now, Lip Pin Yeo from the Singapore Institute of Manufacturing Technology of A*STAR and co-workers have completed a feasibility study of the 'hot roller embossing technique'- a method to fabricate polymer-based microfluidic chips.

Microfluidics are typically based on either silicon, glasses or polymers. According to Yeo, approaches based on silicon or glass are costly because the raw materials and associated manufacturing costs are expensive. Polymers, however, are widely available at low cost and are easy to process.

Commenting on the choice of fabrication method, Yeo says: “The setup cost of a roller embossing facility is much lower compared to conventional silicon and glass microfabrication facilities.” The technique is analogous to gravure printing. Two rollers are used to imprint the required pattern of microchannels on a polymer substrate that is sandwiched between them (Fig. 1).

Click here to read the full story.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.