Innovative Imprinting Technique Produces Highly Ordered Alumina Films with Nano-sized Pores on Silicon Wafers

Nanoporous anodic alumina films are versatile materials that can be used as templates in the fabrication of miniscule multifunctional objects for electronics and energy storage, such as nanotubes and nanowires. Unfortunately, the tedious small-scale techniques required to manufacture these films limits their implementation in industrial processes.

A team led by Tanu Kustandi from the A*STAR Institute of Materials Research and Engineering in Singapore has now developed a microfabrication procedure that is compatible with those used in the semiconductor industry to generate highly ordered nanoporous alumina films on large silicon wafers1.

“Conventionally, films are prepared via a mechanical indentation approach, in which a master stamp is pressed onto an aluminum surface at very high pressure,” explains Kustandi. However, this approach tends to break the underlying substrate that supports the aluminum films.

Click here to read the full story.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.