Sep 1 2010
Microelectronic devices such as computer processors and memory chips almost universally rely on silicon to control electrical currents. However, silicon’s poor light-emitting properties have limited its use in photonics applications, and this has hampered progress in the integration of photonics devices with silicon electronics for optical communications on computer chips. Researchers from the A*STAR Institute of Microelectronics in Singapore have now demonstrated a light-detection system on a silicon chip that is capable of processing 320 gigabits per second (Gbps) — more than 600 times faster than USB 2.0 ports on present-day computers.
Fabricating photonic devices with the sophisticated tools developed by the silicon electronics industry offers a number of benefits. “Using silicon for photonics devices offers good performances, ultra-compact size and very low cost,” says Qing Fang from the research team.
Silicon-compatible detectors made from germanium have already been developed for optical signals. However, industry still awaits complete silicon-based photonic systems that can receive sufficient amounts of data for next-generation photonic systems.
Click here to read the full article.