Vortex Beams Analyse Materials with Rotating Nanoparticles

Prof. Schattschneider from Vienna University of Technology (TU Vienna), together with colleagues from Belgium, is developing a method of producing rotating electron beams and is publishing the technology in the scientific journal "Nature".

A flat wave (left) meets the specially shaped grid screen, which converts the electron beam into right-rotating and left-rotating vortex beams (top and bottom), and a middle beam that does not rotate. Similar to in a tornado, the rotation of the electron current is low internally.

Manipulating materials with rotating quantum particles:  a team from the University of Antwerp and TU Vienna (Professor Peter Schattschneider, Institute of Solid State Physics) has succeeded in producing what are known as vortex beams: rotating electron beams, which make it possible to investigate the magnetic properties of materials. In the future, it may even be possible to manipulate the tiniest components in a targeted manner and set them in rotation. The physicists report on this breakthrough in electron physics and its application in the current edition of "Nature".

Rotating current: the quantum tornado

Electron beams have been used to analyse materials for some time now – for example in electron microscopes. For the most part, the beams' rotation does not affect this analysis. In classical physics, an electron current in a vacuum does not have any orbital angular momentum. In quantum mechanics, however, the electrons must be envisaged as a wavelike current – which can rotate as a whole about its propagation direction, similar to the air flow in a tornado.

Vortex light beams have been used in optics for some time (for example, as optical tweezers for manipulating small particles).  Vortex beams made from electrons also offer many new possibilities for managing nanoparticles or measuring angular momentum-related parameters. However, there were previously no really efficient methods of producing them. "When I was working on an idea of how these beams could be technically produced, it emerged that colleagues from Antwerp had had the same idea", explains Prof Schattschneider. "We therefore decided to pursue the project together: Antwerp had progressed further with the production and Vienna came up with a suggestion for the first application."

The trick with the screen

The production of vortex electron beams was made possible with the help of a grid-like screen cut from platinum foil. When it passes through the platinum screen, the electron beam is diffracted in a similar way to light beams when they pass through a fine grid. The shape of this screen, which measures only a few millionths of a metre, was specifically calculated so that a flat incident electron wave is converted into vortex beams. Right-rotating and left-rotating vortex beams are thus formed behind the grid and in the middle there is a conventional electron beam that does not rotate.

If the electrons are used to irradiate a material which for its part also influences the angular momentum of the electrons, and if the electrons are subsequently directed through the made-to-measure platinum screen, then, after this, either the right-rotating or the left-rotating vortex beam will be more intense. "This enables us to investigate processes affected by angular momentum in nanomaterials much more precisely than was previously possible", explains Prof Schattschneider.

Better than science fiction

The physicist, who also occasionally writes science fiction, does not find it hard to imagine more exotic applications for the vortex beams: "These electron beams could be used in a targeted way to set tiny wheels in motion on a microscopic motor. Also, the magnetic field of the rotating electrons could be used in the tiniest length scales", Schattschneider speculates. Even applications in data transfer (quantum cryptography) and quantum computers are feasible.

Source: http://www.tuwien.ac.at/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.