Posted in | News | Nanofluidics

Instability Key to Mixing Fluids with Markedly Different Viscosities in Microfluidic Devices

Microfluidics is the technology of designing and fabricating devices to manipulate tiny streams of fluids. In the past decade, scientists have developed a variety of microfluidic devices for use in chemical synthesis and biological analysis. These microfluidic devices often utilize an intricate network of channels and reaction chambers to mix different types of fluids at a precise ratio. Many studies assess the mixing performance of microfluidic devices using fluids with similar properties — in real-life applications, however, the properties of fluids used can vary tremendously.

Huanming Xia at the A*STAR Singapore Institute of Manufacturing Technology and co-workers1 have now developed a microfluidic device for mixing fluids with different viscosities. The microfluidic device features a unique network of interconnected channels and circular chambers that triggers instabilities in the fluid flow. These instabilities add up to produce a turbulent flow that dramatically improves the mixing of fluids.

The researchers evaluated the performance of their microfluidic device in mixing glycerol and sodium hydroxide (NaOH), fluids with a 680-fold difference in viscosity. They identified changes in the fluid interface as glycerol and NaOH move along the microfluidic device.

Click here to read the full article.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.