Oct 18 2011
SouthWest NanoTechnologies' (SWeNT) Single-Wall Carbon Nanotubes (SWCNT) are being used in promising photothermal therapy to suppress tumor growth in breast cancer, new research reveals.
According to a new article published in Small, researchers at South China Normal University demonstrated that phototherapy using a laser light focused on implanted SWeNT Single-walled carbon nanotubes (SWCNTs) will selectively destroy the target mitochondria.
The nanoparticles convert the light energy into heat that induces cell death in a way that is more localized, less invasive and kills fewer healthy cells compared to other cancer treatment methods.
In this study, the mice treated only with SWeNT SG65 had an average tumor size similar to that of untreated control mice. While the mice treated by laser alone had a smaller tumors than the control mice, the mice treated with both laser and SWNTs experienced significant tumor suppression.
According to this research, "laser-SWNTs could prove to be a promising photothermal therapy for cancer treatment," says SWeNT CEO Dave Arthur. "It is gratifying that our products seem to enhance biomedical applications and provide lifesaving therapies for cancer patients that leverage the unique properties of our Single-Wall nanotubes."
According to the researchers, "nanomaterials for photothermal therapy should have an absorption band in the Near Infrared (NIR) region with uniform size so that a narrow absorption peak can be used for effective optical irradiation. SWeNT CoMoCAT nanotubes exhibit a sharp absorption band at approximately 980 nm. It was clear that SWNTs released substantial heat after exposure to 980-nm laser irradiation in vitro, and increased the surrounding temperature.
This study was supported by the National Basic Research Program of China, the Program for Changjiang Scholars and Innovative Research Team in University and the National Natural Science Foundation of China.