ORNL Researchers Report Edges of Silicon Nano-Ribbons as Magnetic

Nano-ribbons of silicon configured so the atoms resemble chicken wire could hold the key to ultrahigh density data storage and information processing systems of the future.

(a) Three-dimensional representation of a topographic STM image taken at low temperature on the gold-stabilized vicinal Si(553) surface. Two step edges are imaged. The large bright features are at the locations of the spin-polarized silicon step-edge atoms, as indicated by the red arrows. (b) Normalized conductance curves measured by STM at polarized and non-polarized Si step-edge atoms, revealing the predicted spin-polarized state near 0.5 V.

This was a key finding of a team of scientists led by Paul Snijders of the Department of Energy’s Oak Ridge National Laboratory. The researchers used scanning tunneling microscopy and spectroscopy to validate first principle calculations – or models – that for years had predicted this outcome. The discovery, detailed in New Journal of Physics, validates this theory and could move scientists closer to their long-term goal of cost-effectively creating magnetism in non-magnetic materials.

“While scientists have spent a lot of time studying silicon because it is the workhorse for current information technologies, for the first time we were able to clearly establish that the edges of nano-ribbons feature magnetic silicon atoms,” said Snijders, a member of the Materials Science and Technology Division.

The surprise is that while bulk silicon is non-magnetic, the edges of nano-ribbons of this material are magnetic. Snijders and colleagues at ORNL, Argonne National Laboratory, the University of Wisconsin and Naval Research Laboratory showed that the electron spins are ordered anti-ferromagnetically, which means they point up and down alternatingly. Configured this way, the up and down spin-polarized atoms serve as effective substitutes for conventional zeros and ones common to electron, or charge, current.

“By exploiting the electron spins arising from intrinsic broken bonds at gold-stabilized silicon surfaces, we were able to replace conventional electronically charged zeros and ones with spins pointing up and down,” Snijders said.

This discovery provides a new avenue to study low-dimensional magnetism, the researchers noted. Most importantly, such stepped silicon-gold surfaces provide an atomically precise template for single-spin devices at the ultimate limit of high-density data storage and processing.

“In the quest for smaller and less expensive magnets, electro-motors, electronics and storage devices, creating magnetism in otherwise non-magnetic materials could have far-reaching implications,” Snijders said.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.