Posted in | News | Microscopy | Nanoanalysis

Novel Mass Spectrometry Imaging Technique Captures Kinetic World of Metabolites

What would you do with a camera that can take a picture of something and tell you how new it is? If you’re Berkeley Lab scientists Katherine Louie, Ben Bowen, Jian-Hua Mao and Trent Northen, you use it to gain a better understanding of the ever-changing world of metabolites, the molecules that drive life-sustaining chemical transformations within cells.

The kinetic world of metabolites comes to life in this merged overlay of mass spectrometry images. It shows new versus pre-existing metabolites in a tumor section (yellow and red indicate newer metabolites).

They’re part of a team of researchers that developed a mass spectrometry imaging technique that not only maps the whereabouts of individual metabolites in a biological sample, but how new the metabolites are too.

That’s a big milestone, because metabolites are constantly in flux. They’re synthesized on-demand in order to sustain an organism’s energy requirements. When you eat lunch, metabolites momentarily fire up in various cell populations throughout your body to fuel your day. But they also have a dark side. Cancer cells tap metabolites to drive tumor development.

Unfortunately, the current ways to clinically analyze metabolites don’t capture their kinetics. Microscopy maps the cells and biomarkers in a tumor section. And traditional mass spectrometry reveals the abundance and spatial distribution of molecules such as metabolites.

But these images are static snapshots of a highly dynamic process. They’re blind to how recently the metabolites were synthesized, which is a key piece of information. The metabolic status of a cell population is a good indicator of what the cells were up to when the sample was taken.

To image the ebb and flow of metabolites, the scientists paired mass spectrometry with a clinically accepted way to label tissue that uses a hydrogen isotope called deuterium.

As recently reported in Nature Scientific Reports, they administered deuterium to mice with tumors. Newly synthesized lipids (a hallmark of metabolic activity) became labeled with deuterium, while pre-existing lipids remained unlabeled. The scientists then removed tumor sections and analyzed them with a type of mass spectrometry.

The resulting images look like freeze-frames of a slow-motion fireworks show. They reveal when and where metabolic turnover occurs in a tumor section, with the brighter colors depicting newly synthesized lipids.

The scientists also found that regions with new lipids had a higher tumor grade, which is a good predictor of how quickly a tumor is likely to grow.

“Our approach, called kinetic mass spectrometry imaging, could provide clinicians with quantifiable information they can use,” says Bowen.

The scientists are now applying their imaging technique to study metabolic flux in other biological systems, such as microbial communities. This research is among several projects conducted in Northen’s lab in Berkeley Lab’s Life Sciences Division that explore the metabolism and energetics of cellular communities.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Lawrence Berkeley National Laboratory. (2019, February 11). Novel Mass Spectrometry Imaging Technique Captures Kinetic World of Metabolites. AZoNano. Retrieved on November 23, 2024 from https://www.azonano.com/news.aspx?newsID=27592.

  • MLA

    Lawrence Berkeley National Laboratory. "Novel Mass Spectrometry Imaging Technique Captures Kinetic World of Metabolites". AZoNano. 23 November 2024. <https://www.azonano.com/news.aspx?newsID=27592>.

  • Chicago

    Lawrence Berkeley National Laboratory. "Novel Mass Spectrometry Imaging Technique Captures Kinetic World of Metabolites". AZoNano. https://www.azonano.com/news.aspx?newsID=27592. (accessed November 23, 2024).

  • Harvard

    Lawrence Berkeley National Laboratory. 2019. Novel Mass Spectrometry Imaging Technique Captures Kinetic World of Metabolites. AZoNano, viewed 23 November 2024, https://www.azonano.com/news.aspx?newsID=27592.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.