Research on Nanowire-Based TFETs May Help Reduce Power Consumption of Electronics

TSMC today announced that its collaboration with HiSilicon Technologies Co, Ltd. has successfully produced the foundry segment's first fully functional ARM-based networking processor withFinFET technology.

This milestone is a strong testimonial to deep collaboration between the two companies and TSMC's commitment to providing industry-leading technology to meet the increasing customer demand for the next generation of high-performance, energy-efficient devices.

TSMC's 16FinFET process promises impressive speed and power improvements as well as leakage reduction. All of these advantages overcome challenges that have become critical barriers to further scaling of advanced SoC technology. It has twice the gate density of TSMC's 28HPM process, and operates more than 40% faster at the same total power, or reduces total power over 60% at the same speed.

"Our FinFET R&D goes back over a decade and we are pleased to see the tremendous efforts resulted in this achievement," said TSMC President and Co-CEO, Dr. Mark Liu. "We are confident in our abilities to maximize the technology's capabilities and bring results that match our long track record of foundry leadership in advanced technology nodes."

TSMC's 16FinFET has entered risk production with excellent yields after completing all reliability qualifications in November 2013. This paves the way for TSMC and customers to engage in more future product tape-outs, pilot activities and early sampling.

Built on TSMC's 16FinFET process, HiSilicon's new processor enables a significant leap in performance and power optimization supporting high-end networking applications. By leveraging TSMC's production-proven heterogeneous CoWoS® (Chip-on-Wafer-on-Substrate) 3D IC packaging process, HiSilicon integrates its 16-nanometer logic chips with a 28-nanometer I/O chip for a cost-effective system solution.

"We are delighted to see TSMC's FinFET technology and CoWoS®solution successfully bringing our innovative designs to working silicon," said HiSilicon President Teresa He."This industry's first 32-core ARM Cortex-A57 processor we developed for next-generation wireless communications and routers is based on the ARMv8 architecture with processing speeds of up to 2.6GHz. This networking processor's performance increases by three fold compared with its previous generation. Such a highly competitive product can support virtualization, SDN and NFV applications for next-generation base stations, routers and other networking equipment, and meet our time-to-market goals."

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.