Sep 30 2015
$75 million was recently awarded by the US Department of Defense to establish a new Manufacturing Innovation Institute (MII) for flexible hybrid electronics in San Jose, California. Under the acronym FHE MII, this new entity will follow a hub and node approach managed by the FlexTech Alliance.
According to the news release, the federal funding will be complemented by $96 million from non-federal sources, including the City of San Jose, private companies, universities, several U.S. states, and not-for-profit organizations. In total $171 million will be invested over a five year period, giving a significant boost for flexible electronics.
Meanwhile in France a start-up company called Isorg is building a new production line to print flexible sensors. Once completed, the production line will be the first of its kind to manufacture optical sensors on plastic. When IDTechEx visited the company last year, as part of the research for the report Printed and Flexible Sensors 2015-2025: Technologies, Players, Forecasts, Isorg showed a pilot fabrication line they had used to refine the manufacturing process.
Based on custom made equipment, the printer could automatically load plastic sheets, adjust alignment and deposit the inks with high accuracy. Crucially, the sheets did not have to be first laminated on a glass carrier (an approach currently used to make flexible OLED displays). When the new production line becomes operational in 2017, it will handle sheets of 600 × 600 mm, about three times the area processed in the existing pilot line.
This could be a significant milestone in the industry because you can now easily imagine the very same equipment printing not just photodetectors but all kinds of other sensors. So far, the sensors printed on a mass scale have been the ones with fairly simple structures, such as the disposable glucose test strips used by diabetics. A factory producing billions of these sensors every year would not be suitable for manufacturing Isorg’s photodetectors with decent performances. On the other hand, the new equipment should be compatible with other materials, from heat sensitive polymers to quantum dots.