Posted in | News | Nanomedicine | Nanotoxicology

Scientists Promote Non-Animal Methods to Assess Nanotoxicity in Human Lungs

A workshop organized last year by the PETA International Science Consortium Ltd has resulted in an article published today in the journal Particle and Fibre Toxicology. It describes aerosol generation and exposure tools that can be used to predict toxicity in human lungs following inhalation of nanomaterials.

Nanomaterials are increasingly being used in consumer products such as paints, construction materials, and food packaging, making human exposure to these materials more likely. One of the common ways humans may be exposed to these substances is by inhalation, therefore, regulatory agencies often require the toxicity of these materials on the lungs to be tested. These tests usually involve confining rats to small tubes the size of their bodies and forcing them to breathe potentially toxic substances before they are killed. However, time, cost, scientific and ethical issues have led scientists to develop methods that do not use animals. The tools described in the new article are used to deposit nanomaterials (or other inhalable substances) onto human lung cells grown in a petri dish.

Co-authors of the Particle and Fibre Toxicology article are scientists from the PETA Science Consortium , The Dow Chemical Company, Baylor University, and the U.S. NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM).

"Promoting non-animal methods to assess nanotoxicity has been a focus of the PETA International Science Consortium", said Dr. Monita Sharma, co-author of the publication and Nanotechnology Specialist at the Consortium, "we organized an international workshop last year on inhalation testing of nanomaterials and this review describes some of the tools that can be used to provide a better understanding of what happens in humans after inhaling these substances." During the workshop, experts provided recommendations on the design of an in vitro test to assess the toxicity of nanomaterials (especially multi-walled carbon nanotubes) in the lung, including cell types, endpoints, exposure systems, and dosimetry considerations. Additional publications summarizing the outcomes of the workshop are forthcoming.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.