Posted in | News | Nanomaterials

Spider Comb-Inspired Antiadhesive Tools to Control Sticky Nanomaterials

Cribellate spiders spin thousands of tiny nanofibers into sticky threads. To keep from getting caught in their own webs, these spiders use a nonstick comb on their back legs. Now, researchers reporting in ACS Applied Nano Materials have patterned an antiadhesive nanostructure inspired by this comb onto a foil surface, creating a handy tool to control sticky lab-made nanomaterials for medical, smart textile and other applications.

Spider Combs Tame Unruly Nanofibers | Headline Science

Video Credit: American Chemical Society

Unlike most spiders, which produce silk coated in a sticky glue, cribellate spiders' threads resemble a bristly wool that embeds into the bodies of their prey. During web-making, the spider's comb, or calamistrum, grabs onto the nanofibers emerging from its abdomen and assembles them into threads. Anna-Christin Joel and colleagues wondered why the sticky nanofibers don't cling to the spider's comb. They figured that the answer could reveal new strategies for handling synthetic nanomaterials and nanofibers, which can be tacky.

The researchers began by shaving off the calamistrum from a group of "lace weaver" spiders. In contrast to normal spiders, those lacking combs showed a buildup of nanofibers where the comb should have been. The team also observed that in normal spiders, the surface of the comb was covered with fingerprint-like nanoripples. They found that this structure prevents nanofibers from closely contacting the surface of the spider's leg in the region of the comb, reducing adhesive van der Waals forces. To make an artificial nonstick surface inspired by the spiders' combs, the researchers used lasers to pattern similar nanostructures onto poly(ethylene terephthalate) (PET) foils and then coated the foils with gold. When tested for antiadhesive properties against spider silk, the artificial comb performed almost as well as the natural version.

The authors acknowledge funding from the European Union's Horizon 2020 research and innovation program, the Excellence Initiative of the German federal and state governments and the Deutsche Forschungsgemainschaft.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.