Adding Quantum Dots to Transparent Wood to Brighten Optical Properties

A team of researchers recently submitted a paper to the journal Carbohydrate Polymers, which is available as a pre-proof, that demonstrated the feasibility of using photoluminescent transparent wood (PL) for light conversion using lignin-based quantum dots.

Adding Quantum Dots to Transparent Wood to Brighten Optical Properties

Study: Wood-cellulose photoluminescence material based on carbon quantum dot for light conversion. Image Credit: GiroScience/Shutterstock.com        

Carbon Quantum Dots (CQDs) in Optoelectronics Applications

Nanosized CQDs, a relatively new type of luminescent materials, have gained considerable attention in optoelectronics applications owing to their biocompatibility and unique optical properties such as photostability and tunable emission. However, the fabrication of CQDs in the red emission wavelength has remained a significant challenge.

By adjusting the CQD synthesis process, the emission wavelengths of CQDs can be extended throughout the entire visible spectrum, including red emission, which can expand their applicability to optoelectronics applications such as white-light-emitting diodes (LEDs).

Although effective full-color emission CQDs can be synthesized by preventing aggregation-caused quenching (ACQ) of CQDs using silica gel or polymer matrix, the use of these materials does not support the concept of sustainable and green synthesis. Thus, simple fabrication techniques are required to synthesize robust CQDs with adjustable photoluminescence (PL) emissions.

Bio-Based Methods to Synthesize Full-Color Emission CQDs 

Lignin, one of the abundant biomass materials in nature, can be a suitable material for the synthesis of full-color emission CQDs. Different active oxygen-containing functional groups and the complex aromatic structure of lignin provide favorable conditions for the surface functionalization and formation of conjugated graphite cores in CQDs. Additionally, the natural hierarchical porous structure present in the cellulose skeleton in delignified wood can be utilized as a solid-state matrix to impregnate quantum dots to effectively eliminate the ACD of CQDs.

Synthesis of Photoluminescent Transparent Wood (PTW)

Transparent wood (TW), a bio-based composite material, is synthesized by embedding a cellulose skeleton of delignified wood with an optically transparent polymer matrix, with both of them having a similar refractive index. TW possesses excellent mechanical properties, low thermal conductivity, and optical transmittance, which makes it suitable for optoelectronics-related applications.

In TW, the rigid cellulose framework provides suitable oxygen barriers and dense hydrogen bonding sites, which can help in generating a uniform fluorescence emission.

In this study, CQDs with stable and tunable fluorescence emission from blue to orange wavelengths were fabricated using lignin as the precursor and then embedding it into poplar-based TW/substrate to synthesize PTW. The synthesized CQDs and PTWs were later characterized using different characterization techniques.

Poplar Wood Delignification

The poplar wood was delignified using the chlorine oxidation method. Initially, the poplar wood chips were submerged in a mixture of glacial acetic acid (CH3COOH) and sodium chlorite (NaClO2) and heated in a water bath for four hours at 85o Celsius. Proper concentration of oxidizing chlorine was maintained until the poplar chip color was bleached to pure white.

Ultrapure water was used to eliminate the chemical residue from the chips, while acetone and ethanol were used to eliminate the residual moisture in order to increase the cellulose skeleton rigidity.

Synthesis of CQDs Doped with Nitrogen Elements

Single emission blue CQDs, green CQDs, and orange CQDs were synthesized by hydrothermal carbonization of lignin with various nitrogen-containing compounds. 300 milligrams of urea and 100 milligrams of kraft lignin were dissolved in 10 milliliters of deionized water, and the resultant mixture was heated for eight hours at 160o Celsius.

Subsequently, the reaction was cooled to room temperature, centrifuged at 10,000 rotations per minute for ten minutes using a high-speed centrifuge to remove the solid components, and then dialyzed in deionized water for 48 hours to eliminate small molecules. Eventually, the solution was freeze-dried to obtain blue CQDs. Green and orange CQDs were prepared through the same procedure using different heating temperatures, time, and solvents.

Finally, PTWs were fabricated by impregnating the CQDs into poplar-based TW using the vacuum impregnation method.

Characterization of CQDs and PTWs

Transmission electron microscope (TEM), DXR 532 Raman spectrometer, horizontal X-ray diffractometer (XRD), Ultima IV spectrometer, and ultraviolet (UV)-spectrophotometer were used to characterize the synthesized CQDs. Quanta 200 scanning electron microscope (SEM) combined with an energy dispersive spectrometer (EDS) and a Shimadzu AGS-X tester were employed to characterize the PTW samples.

Study Findings

All three types of CQDs were successfully synthesized and dispersed on the poplar wood cellulose network structure to fabricate PTW. The CQDs were quasi-spherical with average sizes between 1.8 and 3.0 nanometers, highly crystalline in nature, and contained a few nano-graphite layers. Specifically, orange CQDs displayed a typical honeycomb-like crystalline pattern.

The emission color of CQDs displayed a red-shift characteristic with increasing sizes of CQDs. The elemental composition of all three CQDs was almost similar. The surface oxidation of CQDs bolstered the redshift of PL wavelengths, and the chemical proportion and composition primarily impacted the PL performance of CQDs. The optical quantum yields of orange, green, and blue CQDs were 12.09%, 14.42%, and 41.41%, respectively.

The PTWs demonstrated excellent optical haze and transparency, and their mechanical properties were considerably enhanced compared to the original wood. The PTWs also displayed an exceptional multi-color luminous performance.

The Commission Internationale de l'Elcairage (CIE) coordinates of the three PTWs corresponding to standard orange, green, and blue emission areas were (0.628, 0.370), (0.272, 0.432), and (0.166, 0.101), respectively. By regulating the concentration of orange CQDs, blue CQDs, and green CQDs in the PTW, white PTWs were fabricated successfully with the CIE coordinates of (0.293, 0.341).

Taken together, the findings of this study demonstrated that PTWs can be effectively used in the field of fluorescence conversion and uniform light emission owing to their adjustable colorful luminescence performance and exceptional light scattering stability.

Reference

Wu, X., Wu, Y., Xu, R. et al. (2022) Wood-cellulose photoluminescence material based on carbon quantum dot for light conversion. Carbohydrate Polymers. https://www.sciencedirect.com/science/article/pii/S0144861722003344?via%3Dihub.

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Samudrapom Dam

Written by

Samudrapom Dam

Samudrapom Dam is a freelance scientific and business writer based in Kolkata, India. He has been writing articles related to business and scientific topics for more than one and a half years. He has extensive experience in writing about advanced technologies, information technology, machinery, metals and metal products, clean technologies, finance and banking, automotive, household products, and the aerospace industry. He is passionate about the latest developments in advanced technologies, the ways these developments can be implemented in a real-world situation, and how these developments can positively impact common people.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Dam, Samudrapom. (2022, April 05). Adding Quantum Dots to Transparent Wood to Brighten Optical Properties. AZoNano. Retrieved on November 21, 2024 from https://www.azonano.com/news.aspx?newsID=38936.

  • MLA

    Dam, Samudrapom. "Adding Quantum Dots to Transparent Wood to Brighten Optical Properties". AZoNano. 21 November 2024. <https://www.azonano.com/news.aspx?newsID=38936>.

  • Chicago

    Dam, Samudrapom. "Adding Quantum Dots to Transparent Wood to Brighten Optical Properties". AZoNano. https://www.azonano.com/news.aspx?newsID=38936. (accessed November 21, 2024).

  • Harvard

    Dam, Samudrapom. 2022. Adding Quantum Dots to Transparent Wood to Brighten Optical Properties. AZoNano, viewed 21 November 2024, https://www.azonano.com/news.aspx?newsID=38936.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.