Microfluidic Chip Allows Monitoring of the Effect of Medication on Cancer Cells

Monitoring the effect of medication on cancer cells can now take place before treatment and outside of the body, using a special microfluidic chip developed by the Lab-on-a-Chip group of the MESA+ Institute for Nanotechnology, University of Twente, The Netherlands. According to scientist Floor Wolbers, this enables doctors to choose the most efficient type and dose of medication, targeted at a specific type of cancer cell.

The new ‘apoptosis chip’ opens up new possibilities in the diagnosis and treatment of cancer. Just a limited number of cells is required for the analysis, without the need of an operative biopsy. An individual cell can now be monitored when medication is added. Cell culture of millions of cells, with risk of cellular modification, is not necessary using this new method. The chip itself can be made of a relatively cheap and disposable material and meets the high standards of medical use.

Floor Wolbers has done on-chip research of the process called apoptosis, both of healthy cells and breast cancer cells. The major difference is the occurance of ‘anoikis’: dying cells leaving their colony when they die. Cancer cells may release themselves but this doesn’t lead to their death: they metastase elsewhere.

This difference between healthy cells and cancer cells can clearly be seen in the on-chip experiments. Healthy endothelium cells, in the presence of TNF-alpha, show the characteristics of apoptosis and then start to release themselves, dying in the end. Breast cancer cells under the influence of the same substance start showing apoptosis but when they do move away, they don’t necessarily die: there is no anoikis. This is particularly the case for breast cancer cells treated with tamoxifen, which is a common hormone treatment. This clearly shows the specific nature of treatment and dose, and on-chip monitoring will enable a fast comparison of different cell types and cytostatics.

The new technique can already be applied in a clinical setting. At present, the process is monitored using an optical microscope, for high-throughput screening, electronics can be added to the chip. Using multiple chambers for cell culture, fast comparison will be possible.

Floor Wolbers, who defends her PhD-thesis ‘Apoptosis chip for drug screening’ on the 8th of June, 2007, has closely cooperated with the hospital Medisch Spectrum Twente in Enschede, with the gynaecologist dr. H.R. Franke and the clinical chemistry lab of prof.dr. I. Vermes.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.