Oct 21 2008
Despite the success of organ transplantation surgery, many people in need of transplants die while on the waiting list because of the scarcity of donated organs. Artificial, lab-grown organs offer one potential solution to the problem. One novel engineering technique involves the use of modified thermal ink-jet printers to "print" cells, creating the complex three-dimensional structure of real tissues. A lingering question, however, is how well cells survive the process.
Bioengineering graduate student Xiaofeng Cui of Clemson University tested this with a comprehensive study of changes in heat shock protein expression and the morphology of cells after printing. Heat shock protein expression is elevated in response to cell heating and stress. Cui and colleagues found only minor changes in heat shock protein expression after the printing process compared to unprinted cells. They also discovered an interesting side-effect from the process: the creation of small, temporary membrane pores in the printed cells, which could be used for the targeted delivery of drugs and plasmid transfer. "The survival rate of printed mammalian cells is higher than 90 percent, which means the printed cells can repair these changes caused during the printing," Cui says.
Cui's talk, "Heat Shock Protein Expression and Cell Membrane Study of Printed Chinese Hamster Ovary Cells," is at 9:00 am on Tuesday, October 21, 2008, in Room 202 of the Hynes Convention Center.
Abstract: http://www.avssymposium.org/paper.asp?abstractID=968.