Silica Nanowires Thinner Than The Wavelength of Light - New Product

Marrying fiber optics with nanotechnology, scientists at Harvard University have created silica wires that are far narrower than the wavelength of light yet can still guide a light beam with great precision. The wires, about a thousandth the width of a human hair, function with minimal signal loss even when their walls accommodate well under half the breadth of a single light pulse.

A team led by Harvard's Eric Mazur and Limin Tong, a visiting professor from Zhejiang University in China, reports the work in the Dec. 18 issue of the journal Nature.

"You wouldn't normally imagine that a baseball could pass through a garden hose, but these nanowires appear able to handle exactly that kind of wide load," says Mazur, Harvard College Professor, Gordon McKay Professor of Applied Physics and professor of physics. "In some cases light is propagating along wires just one-third the width of its own wavelength. It's almost as if the wire serves as a rail to guide the light rather than funneling it in the traditional sense."

The nanowires carry light via evanescent waves that envelop the slender filaments. If two of the wires touch, light can jump directly from one to the other, something that's not possible with conventional fiber optics.

Although as thin as 50 nanometers, the wires created by Mazur and Tong are up to two centimeters long, making them faintly visible to the naked eye. They display impressive resilience and flexibility, curling easily into light-conducting loops whose diameter is just a tiny fraction of a millimeter.

The wires could aid in the development of optical chips that operate more rapidly and efficiently than today's electronic chips. The tiny structures could also be used to manipulate cells and other microscopic objects. The wires are so fine that they could poke into a cell or a droplet of liquid without disrupting them, yet are extremely sturdy - several times stronger than spider silk, one of the gold standards in the world of materials.

Compared to ordinary fiber optic cable, which appears to the naked eye as a uniform glowing line, the wires created by Mazur and Tong have a beaded appearance when viewed under magnification. That's because unlike a normal fiber, which confines light within its walls, minuscule particles of dust along the nanowires' surface can scatter the light beam. Mazur and Tong say this sensitivity to surface contaminants could lead to use of the nanowires as molecular sensors.

"You could fit the surface of the wire with receptors for biological or chemical molecules," Mazur says. "If those target molecules are present, they'll attach to the receptors and you'll see a strand of tiny lights shining when you launch light into the wires."

While other researchers have tried stretching silicon wires to make them thinner, previous work has not yielded such uniform and smooth structures. Tong applied an ingenious technique to create the nanowires, wrapping a thicker silica wire around a sapphire taper which was held over a flame. As the wire reached temperatures of about 1,700 degrees Celsius, he drew it slowly along the taper, elongating and narrowing it. The resulting strands are not only ultrathin, but have a highly smooth surface and uniform composition.

Posted 27th November 2003

Tell Us What You Think

Do you have a review, update or anything you would like to add to this article?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.