Researchers Decipher Chemical Mechanism that Occurs on the Surface of Automotive Catalytic Converter

The chemical mechanism that occurs on the surface of an automotive catalytic converter has been deciphered thanks to an observation speed record established by Frédéric Thibault-Strarzyk at the Laboratoire Catalyse et Spectrochimie in Caen (CNRS-Ensicaen), a government-funded research organization, under the administrative authority of France's Ministry of Research. This performance, achieved in collaboration with the University of Cambridge, has made it possible to characterize this key step in the reaction that ensures pollutant removal by automotive converters. The challenge is indeed considerable: to obtain a clearer understanding of the mechanisms of removal catalysts in order to improve converters and other catalysts used by the automotive industry.

A catalytic converter included in a vehicle's exhaust system is a solid element that converts the toxic gases generated by the engine into a mixture of inoffensive gases. Although these catalysts are widely employed, their chemical mechanisms have hitherto been poorly understood.

In addition to improving catalytic converters, this observation technique will also help to understand many of the other pollutant removal systems used by industry.

The observation of very fleeting types of catalysts in the context of these mechanisms is particularly challenging. Until now, the most rapid observations of the surface of these catalysts using infrared methods were around one-tenth of a second. A novel combination of observation methods has now reduced the duration of observations by a factor of one million.

This manipulation was achieved using a femtosecond laser(1) which was focused on the surface of the solid catalyst made up of silver nanoparticles on an alumina substrate and placed in an atmosphere of toxic gases, thus recreating the conditions of a converter in an exhaust system. As soon as the reaction was triggered by the laser beam, an infrared spectrometer analyzed the surface of the catalyst at a rate of 30 million observations per second. The key intermediate step in the removal reaction was thus observed for the first time and consisted in a cyanide flip between the silver nanoparticles and the substrate. This molecular flip only lasted 2 microseconds and indeed explains how the removal catalyst functions.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.